ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

x^{2}+3x-4=0
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
a+b=3 ab=1\left(-4\right)=-4
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى x^{2}+ax+bx-4 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,4 -2,2
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ھاسىلات -4 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1+4=3 -2+2=0
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-1 b=4
3 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x^{2}-x\right)+\left(4x-4\right)
x^{2}+3x-4 نى \left(x^{2}-x\right)+\left(4x-4\right) شەكلىدە قايتا يېزىڭ.
x\left(x-1\right)+4\left(x-1\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 4 نى چىقىرىڭ.
\left(x-1\right)\left(x+4\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-1 نى چىقىرىڭ.
x=1 x=-4
تەڭلىمىنى يېشىش ئۈچۈن x-1=0 بىلەن x+4=0 نى يېشىڭ.
2x^{2}+6x-8=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-6±\sqrt{6^{2}-4\times 2\left(-8\right)}}{2\times 2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 2 نى a گە، 6 نى b گە ۋە -8 نى c گە ئالماشتۇرۇڭ.
x=\frac{-6±\sqrt{36-4\times 2\left(-8\right)}}{2\times 2}
6 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-6±\sqrt{36-8\left(-8\right)}}{2\times 2}
-4 نى 2 كە كۆپەيتىڭ.
x=\frac{-6±\sqrt{36+64}}{2\times 2}
-8 نى -8 كە كۆپەيتىڭ.
x=\frac{-6±\sqrt{100}}{2\times 2}
36 نى 64 گە قوشۇڭ.
x=\frac{-6±10}{2\times 2}
100 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-6±10}{4}
2 نى 2 كە كۆپەيتىڭ.
x=\frac{4}{4}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-6±10}{4} نى يېشىڭ. -6 نى 10 گە قوشۇڭ.
x=1
4 نى 4 كە بۆلۈڭ.
x=-\frac{16}{4}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-6±10}{4} نى يېشىڭ. -6 دىن 10 نى ئېلىڭ.
x=-4
-16 نى 4 كە بۆلۈڭ.
x=1 x=-4
تەڭلىمە يېشىلدى.
2x^{2}+6x-8=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
2x^{2}+6x-8-\left(-8\right)=-\left(-8\right)
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 8 نى قوشۇڭ.
2x^{2}+6x=-\left(-8\right)
-8 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
2x^{2}+6x=8
0 دىن -8 نى ئېلىڭ.
\frac{2x^{2}+6x}{2}=\frac{8}{2}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x^{2}+\frac{6}{2}x=\frac{8}{2}
2 گە بۆلگەندە 2 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+3x=\frac{8}{2}
6 نى 2 كە بۆلۈڭ.
x^{2}+3x=4
8 نى 2 كە بۆلۈڭ.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=4+\left(\frac{3}{2}\right)^{2}
3، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{3}{2} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{3}{2} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+3x+\frac{9}{4}=4+\frac{9}{4}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{3}{2} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+3x+\frac{9}{4}=\frac{25}{4}
4 نى \frac{9}{4} گە قوشۇڭ.
\left(x+\frac{3}{2}\right)^{2}=\frac{25}{4}
كۆپەيتكۈچى x^{2}+3x+\frac{9}{4}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{3}{2}=\frac{5}{2} x+\frac{3}{2}=-\frac{5}{2}
ئاددىيلاشتۇرۇڭ.
x=1 x=-4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{3}{2} نى ئېلىڭ.