كۆپەيتكۈچى
2\left(x+2\right)\left(x+6\right)
ھېسابلاش
2\left(x+2\right)\left(x+6\right)
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
2\left(x^{2}+8x+12\right)
2 نى ئاجرىتىپ چىقىرىڭ.
a+b=8 ab=1\times 12=12
x^{2}+8x+12 نى ئويلىشىپ كۆرۈڭ. ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى x^{2}+ax+bx+12 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,12 2,6 3,4
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مۇسبەت، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مۇسبەت. ھاسىلات 12 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1+12=13 2+6=8 3+4=7
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=2 b=6
8 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x^{2}+2x\right)+\left(6x+12\right)
x^{2}+8x+12 نى \left(x^{2}+2x\right)+\left(6x+12\right) شەكلىدە قايتا يېزىڭ.
x\left(x+2\right)+6\left(x+2\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 6 نى چىقىرىڭ.
\left(x+2\right)\left(x+6\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x+2 نى چىقىرىڭ.
2\left(x+2\right)\left(x+6\right)
تولۇق كۆپەيتىلگەن ئىپادىنى قايتا يېزىڭ.
2x^{2}+16x+24=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-16±\sqrt{16^{2}-4\times 2\times 24}}{2\times 2}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-16±\sqrt{256-4\times 2\times 24}}{2\times 2}
16 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-16±\sqrt{256-8\times 24}}{2\times 2}
-4 نى 2 كە كۆپەيتىڭ.
x=\frac{-16±\sqrt{256-192}}{2\times 2}
-8 نى 24 كە كۆپەيتىڭ.
x=\frac{-16±\sqrt{64}}{2\times 2}
256 نى -192 گە قوشۇڭ.
x=\frac{-16±8}{2\times 2}
64 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-16±8}{4}
2 نى 2 كە كۆپەيتىڭ.
x=-\frac{8}{4}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-16±8}{4} نى يېشىڭ. -16 نى 8 گە قوشۇڭ.
x=-2
-8 نى 4 كە بۆلۈڭ.
x=-\frac{24}{4}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-16±8}{4} نى يېشىڭ. -16 دىن 8 نى ئېلىڭ.
x=-6
-24 نى 4 كە بۆلۈڭ.
2x^{2}+16x+24=2\left(x-\left(-2\right)\right)\left(x-\left(-6\right)\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. -2 نى x_{1} گە ۋە -6 نى x_{2} گە ئالماشتۇرۇڭ.
2x^{2}+16x+24=2\left(x+2\right)\left(x+6\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}