ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

2x+3y=6,6x-5y=4
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
2x+3y=6
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
2x=-3y+6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 3y نى ئېلىڭ.
x=\frac{1}{2}\left(-3y+6\right)
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=-\frac{3}{2}y+3
\frac{1}{2} نى -3y+6 كە كۆپەيتىڭ.
6\left(-\frac{3}{2}y+3\right)-5y=4
يەنە بىر تەڭلىمە 6x-5y=4 دىكى x نىڭ ئورنىغا -\frac{3y}{2}+3 نى ئالماشتۇرۇڭ.
-9y+18-5y=4
6 نى -\frac{3y}{2}+3 كە كۆپەيتىڭ.
-14y+18=4
-9y نى -5y گە قوشۇڭ.
-14y=-14
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 18 نى ئېلىڭ.
y=1
ھەر ئىككى تەرەپنى -14 گە بۆلۈڭ.
x=-\frac{3}{2}+3
x=-\frac{3}{2}y+3 دە 1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{3}{2}
3 نى -\frac{3}{2} گە قوشۇڭ.
x=\frac{3}{2},y=1
سىستېما ھەل قىلىندى.
2x+3y=6,6x-5y=4
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}2&3\\6&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\4\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}2&3\\6&-5\end{matrix}\right))\left(\begin{matrix}2&3\\6&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&-5\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
\left(\begin{matrix}2&3\\6&-5\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&-5\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&-5\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2\left(-5\right)-3\times 6}&-\frac{3}{2\left(-5\right)-3\times 6}\\-\frac{6}{2\left(-5\right)-3\times 6}&\frac{2}{2\left(-5\right)-3\times 6}\end{matrix}\right)\left(\begin{matrix}6\\4\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{28}&\frac{3}{28}\\\frac{3}{14}&-\frac{1}{14}\end{matrix}\right)\left(\begin{matrix}6\\4\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{28}\times 6+\frac{3}{28}\times 4\\\frac{3}{14}\times 6-\frac{1}{14}\times 4\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\1\end{matrix}\right)
ھېسابلاڭ.
x=\frac{3}{2},y=1
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
2x+3y=6,6x-5y=4
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
6\times 2x+6\times 3y=6\times 6,2\times 6x+2\left(-5\right)y=2\times 4
2x بىلەن 6x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 6 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 2 گە كۆپەيتىڭ.
12x+18y=36,12x-10y=8
ئاددىيلاشتۇرۇڭ.
12x-12x+18y+10y=36-8
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 12x+18y=36 دىن 12x-10y=8 نى ئېلىڭ.
18y+10y=36-8
12x نى -12x گە قوشۇڭ. 12x بىلەن -12x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
28y=36-8
18y نى 10y گە قوشۇڭ.
28y=28
36 نى -8 گە قوشۇڭ.
y=1
ھەر ئىككى تەرەپنى 28 گە بۆلۈڭ.
6x-5=4
6x-5y=4 دە 1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
6x=9
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 5 نى قوشۇڭ.
x=\frac{3}{2}
ھەر ئىككى تەرەپنى 6 گە بۆلۈڭ.
x=\frac{3}{2},y=1
سىستېما ھەل قىلىندى.