كۆپەيتكۈچى
2\left(x-3\right)^{2}
ھېسابلاش
2\left(x-3\right)^{2}
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
2\left(x^{2}-6x+9\right)
2 نى ئاجرىتىپ چىقىرىڭ.
\left(x-3\right)^{2}
x^{2}-6x+9 نى ئويلىشىپ كۆرۈڭ. a=x ۋە b=3 بولغان پۈتۈن سانلىق كىۋادرات فورمۇلاسى a^{2}-2ab+b^{2}=\left(a-b\right)^{2} نى ئىشلىتىڭ.
2\left(x-3\right)^{2}
تولۇق كۆپەيتىلگەن ئىپادىنى قايتا يېزىڭ.
factor(2x^{2}-12x+18)
ئۈچ ئەزالىق ئۈچ ئەزالىق كىۋادرات شەكلىدە بولۇپ، بىر ئومۇمىي بۆلگۈچى ئارقىلىق كۆپەيتىلىشى مۇمكىن. باش ۋە ئاياغ ئەزالارنىڭ كىۋادرات يىلتىزىنى تېپىش ئارقىلىق ئۈچ ئەزالىق كىۋادراتنىڭ كۆپەيتكۈچىسىنى تېپىشقا بولىدۇ.
gcf(2,-12,18)=2
كوئېففىتسېنتلارنىڭ ئەڭ چوڭ ئومۇمىي بۆلگۈچىسىنى تېپىڭ.
2\left(x^{2}-6x+9\right)
2 نى ئاجرىتىپ چىقىرىڭ.
\sqrt{9}=3
ئاياغ ئەزا 9 نىڭ كىۋادرات يىلتىزىنى تېپىڭ.
2\left(x-3\right)^{2}
ئۈچ ئەزالىق كىۋادرات باش ۋە ئاياغ ئەزالارنىڭ كىۋادرات يىلتىزىنىڭ يىغىندىسى ياكى ئايرىمىسى بولغان ئىككى ئەزالىق كىۋادراتتۇر.
2x^{2}-12x+18=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 18}}{2\times 2}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 2\times 18}}{2\times 2}
-12 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-12\right)±\sqrt{144-8\times 18}}{2\times 2}
-4 نى 2 كە كۆپەيتىڭ.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 2}
-8 نى 18 كە كۆپەيتىڭ.
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 2}
144 نى -144 گە قوشۇڭ.
x=\frac{-\left(-12\right)±0}{2\times 2}
0 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{12±0}{2\times 2}
-12 نىڭ قارشىسى 12 دۇر.
x=\frac{12±0}{4}
2 نى 2 كە كۆپەيتىڭ.
2x^{2}-12x+18=2\left(x-3\right)\left(x-3\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. 3 نى x_{1} گە ۋە 3 نى x_{2} گە ئالماشتۇرۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}