ئاساسىي مەزمۇنغا ئاتلاش
كۆپەيتكۈچى
Tick mark Image
ھېسابلاش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=1 ab=2\left(-6\right)=-12
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى 2x^{2}+ax+bx-6 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,12 -2,6 -3,4
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ھاسىلات -12 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1+12=11 -2+6=4 -3+4=1
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-3 b=4
1 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(2x^{2}-3x\right)+\left(4x-6\right)
2x^{2}+x-6 نى \left(2x^{2}-3x\right)+\left(4x-6\right) شەكلىدە قايتا يېزىڭ.
x\left(2x-3\right)+2\left(2x-3\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 2 نى چىقىرىڭ.
\left(2x-3\right)\left(x+2\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا 2x-3 نى چىقىرىڭ.
2x^{2}+x-6=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-6\right)}}{2\times 2}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-1±\sqrt{1-4\times 2\left(-6\right)}}{2\times 2}
1 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-1±\sqrt{1-8\left(-6\right)}}{2\times 2}
-4 نى 2 كە كۆپەيتىڭ.
x=\frac{-1±\sqrt{1+48}}{2\times 2}
-8 نى -6 كە كۆپەيتىڭ.
x=\frac{-1±\sqrt{49}}{2\times 2}
1 نى 48 گە قوشۇڭ.
x=\frac{-1±7}{2\times 2}
49 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-1±7}{4}
2 نى 2 كە كۆپەيتىڭ.
x=\frac{6}{4}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-1±7}{4} نى يېشىڭ. -1 نى 7 گە قوشۇڭ.
x=\frac{3}{2}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{6}{4} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=-\frac{8}{4}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-1±7}{4} نى يېشىڭ. -1 دىن 7 نى ئېلىڭ.
x=-2
-8 نى 4 كە بۆلۈڭ.
2x^{2}+x-6=2\left(x-\frac{3}{2}\right)\left(x-\left(-2\right)\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. \frac{3}{2} نى x_{1} گە ۋە -2 نى x_{2} گە ئالماشتۇرۇڭ.
2x^{2}+x-6=2\left(x-\frac{3}{2}\right)\left(x+2\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.
2x^{2}+x-6=2\times \frac{2x-3}{2}\left(x+2\right)
ئومۇمىي مەخرەجنى تېپىش ۋە سۈرەتلەرنى ئېلىش ئارقىلىق x دىن \frac{3}{2} نى ئېلىپ، كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
2x^{2}+x-6=\left(2x-3\right)\left(x+2\right)
2 بىلەن 2 دىكى ئەڭ چوڭ ئومۇمىي بۆلگۈچى 2 نى يېيىشتۈرۈڭ.