ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

x\left(2x+5-1\right)=0
x نى ئاجرىتىپ چىقىرىڭ.
x=0 x=-2
تەڭلىمىنى يېشىش ئۈچۈن x=0 بىلەن 2x+4=0 نى يېشىڭ.
2x^{2}+4x=0
5x بىلەن -x نى بىرىكتۈرۈپ 4x نى چىقىرىڭ.
x=\frac{-4±\sqrt{4^{2}}}{2\times 2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 2 نى a گە، 4 نى b گە ۋە 0 نى c گە ئالماشتۇرۇڭ.
x=\frac{-4±4}{2\times 2}
4^{2} نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-4±4}{4}
2 نى 2 كە كۆپەيتىڭ.
x=\frac{0}{4}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-4±4}{4} نى يېشىڭ. -4 نى 4 گە قوشۇڭ.
x=0
0 نى 4 كە بۆلۈڭ.
x=-\frac{8}{4}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-4±4}{4} نى يېشىڭ. -4 دىن 4 نى ئېلىڭ.
x=-2
-8 نى 4 كە بۆلۈڭ.
x=0 x=-2
تەڭلىمە يېشىلدى.
2x^{2}+4x=0
5x بىلەن -x نى بىرىكتۈرۈپ 4x نى چىقىرىڭ.
\frac{2x^{2}+4x}{2}=\frac{0}{2}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x^{2}+\frac{4}{2}x=\frac{0}{2}
2 گە بۆلگەندە 2 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+2x=\frac{0}{2}
4 نى 2 كە بۆلۈڭ.
x^{2}+2x=0
0 نى 2 كە بۆلۈڭ.
x^{2}+2x+1^{2}=1^{2}
2، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، 1 نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 1 نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+2x+1=1
1 نىڭ كىۋادراتىنى تېپىڭ.
\left(x+1\right)^{2}=1
كۆپەيتكۈچى x^{2}+2x+1. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+1\right)^{2}}=\sqrt{1}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+1=1 x+1=-1
ئاددىيلاشتۇرۇڭ.
x=0 x=-2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 1 نى ئېلىڭ.