x نى يېشىش
x = \frac{\sqrt{73} - 3}{4} \approx 1.386000936
x=\frac{-\sqrt{73}-3}{4}\approx -2.886000936
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
2x^{2}+3x-2=6
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
2x^{2}+3x-2-6=6-6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 6 نى ئېلىڭ.
2x^{2}+3x-2-6=0
6 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
2x^{2}+3x-8=0
-2 دىن 6 نى ئېلىڭ.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-8\right)}}{2\times 2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 2 نى a گە، 3 نى b گە ۋە -8 نى c گە ئالماشتۇرۇڭ.
x=\frac{-3±\sqrt{9-4\times 2\left(-8\right)}}{2\times 2}
3 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-3±\sqrt{9-8\left(-8\right)}}{2\times 2}
-4 نى 2 كە كۆپەيتىڭ.
x=\frac{-3±\sqrt{9+64}}{2\times 2}
-8 نى -8 كە كۆپەيتىڭ.
x=\frac{-3±\sqrt{73}}{2\times 2}
9 نى 64 گە قوشۇڭ.
x=\frac{-3±\sqrt{73}}{4}
2 نى 2 كە كۆپەيتىڭ.
x=\frac{\sqrt{73}-3}{4}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-3±\sqrt{73}}{4} نى يېشىڭ. -3 نى \sqrt{73} گە قوشۇڭ.
x=\frac{-\sqrt{73}-3}{4}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-3±\sqrt{73}}{4} نى يېشىڭ. -3 دىن \sqrt{73} نى ئېلىڭ.
x=\frac{\sqrt{73}-3}{4} x=\frac{-\sqrt{73}-3}{4}
تەڭلىمە يېشىلدى.
2x^{2}+3x-2=6
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
2x^{2}+3x-2-\left(-2\right)=6-\left(-2\right)
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 2 نى قوشۇڭ.
2x^{2}+3x=6-\left(-2\right)
-2 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
2x^{2}+3x=8
6 دىن -2 نى ئېلىڭ.
\frac{2x^{2}+3x}{2}=\frac{8}{2}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x^{2}+\frac{3}{2}x=\frac{8}{2}
2 گە بۆلگەندە 2 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+\frac{3}{2}x=4
8 نى 2 كە بۆلۈڭ.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=4+\left(\frac{3}{4}\right)^{2}
\frac{3}{2}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{3}{4} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{3}{4} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+\frac{3}{2}x+\frac{9}{16}=4+\frac{9}{16}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{3}{4} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{73}{16}
4 نى \frac{9}{16} گە قوشۇڭ.
\left(x+\frac{3}{4}\right)^{2}=\frac{73}{16}
كۆپەيتكۈچى x^{2}+\frac{3}{2}x+\frac{9}{16}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{73}{16}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{3}{4}=\frac{\sqrt{73}}{4} x+\frac{3}{4}=-\frac{\sqrt{73}}{4}
ئاددىيلاشتۇرۇڭ.
x=\frac{\sqrt{73}-3}{4} x=\frac{-\sqrt{73}-3}{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{3}{4} نى ئېلىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}