ئاساسىي مەزمۇنغا ئاتلاش
كۆپەيتكۈچى
Tick mark Image
ھېسابلاش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=11 ab=2\left(-30\right)=-60
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى 2x^{2}+ax+bx-30 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,60 -2,30 -3,20 -4,15 -5,12 -6,10
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ھاسىلات -60 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1+60=59 -2+30=28 -3+20=17 -4+15=11 -5+12=7 -6+10=4
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-4 b=15
11 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(2x^{2}-4x\right)+\left(15x-30\right)
2x^{2}+11x-30 نى \left(2x^{2}-4x\right)+\left(15x-30\right) شەكلىدە قايتا يېزىڭ.
2x\left(x-2\right)+15\left(x-2\right)
بىرىنچى گۇرۇپپىدىن 2x نى، ئىككىنچى گۇرۇپپىدىن 15 نى چىقىرىڭ.
\left(x-2\right)\left(2x+15\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-2 نى چىقىرىڭ.
2x^{2}+11x-30=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-11±\sqrt{11^{2}-4\times 2\left(-30\right)}}{2\times 2}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-11±\sqrt{121-4\times 2\left(-30\right)}}{2\times 2}
11 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-11±\sqrt{121-8\left(-30\right)}}{2\times 2}
-4 نى 2 كە كۆپەيتىڭ.
x=\frac{-11±\sqrt{121+240}}{2\times 2}
-8 نى -30 كە كۆپەيتىڭ.
x=\frac{-11±\sqrt{361}}{2\times 2}
121 نى 240 گە قوشۇڭ.
x=\frac{-11±19}{2\times 2}
361 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-11±19}{4}
2 نى 2 كە كۆپەيتىڭ.
x=\frac{8}{4}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-11±19}{4} نى يېشىڭ. -11 نى 19 گە قوشۇڭ.
x=2
8 نى 4 كە بۆلۈڭ.
x=-\frac{30}{4}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-11±19}{4} نى يېشىڭ. -11 دىن 19 نى ئېلىڭ.
x=-\frac{15}{2}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-30}{4} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
2x^{2}+11x-30=2\left(x-2\right)\left(x-\left(-\frac{15}{2}\right)\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. 2 نى x_{1} گە ۋە -\frac{15}{2} نى x_{2} گە ئالماشتۇرۇڭ.
2x^{2}+11x-30=2\left(x-2\right)\left(x+\frac{15}{2}\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.
2x^{2}+11x-30=2\left(x-2\right)\times \frac{2x+15}{2}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{15}{2} نى x گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
2x^{2}+11x-30=\left(x-2\right)\left(2x+15\right)
2 بىلەن 2 دىكى ئەڭ چوڭ ئومۇمىي بۆلگۈچى 2 نى يېيىشتۈرۈڭ.