x نى يېشىش
x=\frac{\sqrt{2485}}{20}+0.25\approx 2.742488716
x=-\frac{\sqrt{2485}}{20}+0.25\approx -2.242488716
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
2x^{2}-x=12.3
ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
2x^{2}-x-12.3=0
ھەر ئىككى تەرەپتىن 12.3 نى ئېلىڭ.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-12.3\right)}}{2\times 2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 2 نى a گە، -1 نى b گە ۋە -12.3 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-12.3\right)}}{2\times 2}
-4 نى 2 كە كۆپەيتىڭ.
x=\frac{-\left(-1\right)±\sqrt{1+98.4}}{2\times 2}
-8 نى -12.3 كە كۆپەيتىڭ.
x=\frac{-\left(-1\right)±\sqrt{99.4}}{2\times 2}
1 نى 98.4 گە قوشۇڭ.
x=\frac{-\left(-1\right)±\frac{\sqrt{2485}}{5}}{2\times 2}
99.4 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{1±\frac{\sqrt{2485}}{5}}{2\times 2}
-1 نىڭ قارشىسى 1 دۇر.
x=\frac{1±\frac{\sqrt{2485}}{5}}{4}
2 نى 2 كە كۆپەيتىڭ.
x=\frac{\frac{\sqrt{2485}}{5}+1}{4}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{1±\frac{\sqrt{2485}}{5}}{4} نى يېشىڭ. 1 نى \frac{\sqrt{2485}}{5} گە قوشۇڭ.
x=\frac{\sqrt{2485}}{20}+\frac{1}{4}
1+\frac{\sqrt{2485}}{5} نى 4 كە بۆلۈڭ.
x=\frac{-\frac{\sqrt{2485}}{5}+1}{4}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{1±\frac{\sqrt{2485}}{5}}{4} نى يېشىڭ. 1 دىن \frac{\sqrt{2485}}{5} نى ئېلىڭ.
x=-\frac{\sqrt{2485}}{20}+\frac{1}{4}
1-\frac{\sqrt{2485}}{5} نى 4 كە بۆلۈڭ.
x=\frac{\sqrt{2485}}{20}+\frac{1}{4} x=-\frac{\sqrt{2485}}{20}+\frac{1}{4}
تەڭلىمە يېشىلدى.
2x^{2}-x=12.3
ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
\frac{2x^{2}-x}{2}=\frac{12.3}{2}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x^{2}-\frac{1}{2}x=\frac{12.3}{2}
2 گە بۆلگەندە 2 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-\frac{1}{2}x=6.15
12.3 نى 2 كە بۆلۈڭ.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=6.15+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{1}{4} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{1}{4} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=6.15+\frac{1}{16}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{1}{4} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{497}{80}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق 6.15 نى \frac{1}{16} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x-\frac{1}{4}\right)^{2}=\frac{497}{80}
كۆپەيتكۈچى x^{2}-\frac{1}{2}x+\frac{1}{16}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{497}{80}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{1}{4}=\frac{\sqrt{2485}}{20} x-\frac{1}{4}=-\frac{\sqrt{2485}}{20}
ئاددىيلاشتۇرۇڭ.
x=\frac{\sqrt{2485}}{20}+\frac{1}{4} x=-\frac{\sqrt{2485}}{20}+\frac{1}{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{4} نى قوشۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}