ئاساسىي مەزمۇنغا ئاتلاش
n نى يېشىش
Tick mark Image
n نى يېشىش (complex solution)
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

2^{n-1}=\frac{1}{32}
دەرىجە كۆرسەتكۈچى ۋە لوگارىفما قائىدىلىرى ئارقىلىق تەڭلىمىنى يېشىڭ.
\log(2^{n-1})=\log(\frac{1}{32})
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ لوگارىفمىسىنى چىقىرىڭ.
\left(n-1\right)\log(2)=\log(\frac{1}{32})
دەرىجىگە كۆتۈرۈلگەن ساننىڭ لوگارىفمىسى شۇ ساننىڭ لوگارىفمىسىنى ھەسسىلەيدىغان دەرىجىدۇر.
n-1=\frac{\log(\frac{1}{32})}{\log(2)}
ھەر ئىككى تەرەپنى \log(2) گە بۆلۈڭ.
n-1=\log_{2}\left(\frac{1}{32}\right)
ئاساسىي فورمۇلا \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right) نىڭ ئۆزگىرىش ئارقىلىق.
n=-5-\left(-1\right)
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 1 نى قوشۇڭ.