a نى يېشىش
a=\frac{13}{18b}
b\neq 0
b نى يېشىش
b=\frac{13}{18a}
a\neq 0
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
18ab=5+8
8 نى ھەر ئىككى تەرەپكە قوشۇڭ.
18ab=13
5 گە 8 نى قوشۇپ 13 نى چىقىرىڭ.
18ba=13
تەڭلىمە ئۆلچەملىك بولدى.
\frac{18ba}{18b}=\frac{13}{18b}
ھەر ئىككى تەرەپنى 18b گە بۆلۈڭ.
a=\frac{13}{18b}
18b گە بۆلگەندە 18b گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
18ab=5+8
8 نى ھەر ئىككى تەرەپكە قوشۇڭ.
18ab=13
5 گە 8 نى قوشۇپ 13 نى چىقىرىڭ.
\frac{18ab}{18a}=\frac{13}{18a}
ھەر ئىككى تەرەپنى 18a گە بۆلۈڭ.
b=\frac{13}{18a}
18a گە بۆلگەندە 18a گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}