كۆپەيتكۈچى
-\left(x-8\right)\left(x+2\right)
ھېسابلاش
-\left(x-8\right)\left(x+2\right)
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
-x^{2}+6x+16
كۆپ ئەزالىقنى ئۆلچەملىك شەكىلدە رەتلەڭ. ئەزالارنى چوڭدىن كىچىككە تىزىڭ.
a+b=6 ab=-16=-16
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى -x^{2}+ax+bx+16 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,16 -2,8 -4,4
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ھاسىلات -16 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1+16=15 -2+8=6 -4+4=0
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=8 b=-2
6 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(-x^{2}+8x\right)+\left(-2x+16\right)
-x^{2}+6x+16 نى \left(-x^{2}+8x\right)+\left(-2x+16\right) شەكلىدە قايتا يېزىڭ.
-x\left(x-8\right)-2\left(x-8\right)
بىرىنچى گۇرۇپپىدىن -x نى، ئىككىنچى گۇرۇپپىدىن -2 نى چىقىرىڭ.
\left(x-8\right)\left(-x-2\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-8 نى چىقىرىڭ.
-x^{2}+6x+16=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\times 16}}{2\left(-1\right)}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-6±\sqrt{36-4\left(-1\right)\times 16}}{2\left(-1\right)}
6 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-6±\sqrt{36+4\times 16}}{2\left(-1\right)}
-4 نى -1 كە كۆپەيتىڭ.
x=\frac{-6±\sqrt{36+64}}{2\left(-1\right)}
4 نى 16 كە كۆپەيتىڭ.
x=\frac{-6±\sqrt{100}}{2\left(-1\right)}
36 نى 64 گە قوشۇڭ.
x=\frac{-6±10}{2\left(-1\right)}
100 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-6±10}{-2}
2 نى -1 كە كۆپەيتىڭ.
x=\frac{4}{-2}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-6±10}{-2} نى يېشىڭ. -6 نى 10 گە قوشۇڭ.
x=-2
4 نى -2 كە بۆلۈڭ.
x=-\frac{16}{-2}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-6±10}{-2} نى يېشىڭ. -6 دىن 10 نى ئېلىڭ.
x=8
-16 نى -2 كە بۆلۈڭ.
-x^{2}+6x+16=-\left(x-\left(-2\right)\right)\left(x-8\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. -2 نى x_{1} گە ۋە 8 نى x_{2} گە ئالماشتۇرۇڭ.
-x^{2}+6x+16=-\left(x+2\right)\left(x-8\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}