ئاساسىي مەزمۇنغا ئاتلاش
كۆپەيتكۈچى
Tick mark Image
ھېسابلاش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

4\left(3x^{2}+2x\right)
4 نى ئاجرىتىپ چىقىرىڭ.
x\left(3x+2\right)
3x^{2}+2x نى ئويلىشىپ كۆرۈڭ. x نى ئاجرىتىپ چىقىرىڭ.
4x\left(3x+2\right)
تولۇق كۆپەيتىلگەن ئىپادىنى قايتا يېزىڭ.
12x^{2}+8x=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-8±\sqrt{8^{2}}}{2\times 12}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-8±8}{2\times 12}
8^{2} نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-8±8}{24}
2 نى 12 كە كۆپەيتىڭ.
x=\frac{0}{24}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-8±8}{24} نى يېشىڭ. -8 نى 8 گە قوشۇڭ.
x=0
0 نى 24 كە بۆلۈڭ.
x=-\frac{16}{24}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-8±8}{24} نى يېشىڭ. -8 دىن 8 نى ئېلىڭ.
x=-\frac{2}{3}
8 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-16}{24} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
12x^{2}+8x=12x\left(x-\left(-\frac{2}{3}\right)\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. 0 نى x_{1} گە ۋە -\frac{2}{3} نى x_{2} گە ئالماشتۇرۇڭ.
12x^{2}+8x=12x\left(x+\frac{2}{3}\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.
12x^{2}+8x=12x\times \frac{3x+2}{3}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{2}{3} نى x گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
12x^{2}+8x=4x\left(3x+2\right)
12 بىلەن 3 دىكى ئەڭ چوڭ ئومۇمىي بۆلگۈچى 3 نى يېيىشتۈرۈڭ.