x نى يېشىش
x = \frac{6}{5} = 1\frac{1}{5} = 1.2
x=0
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
x\left(10x-12\right)=0
x نى ئاجرىتىپ چىقىرىڭ.
x=0 x=\frac{6}{5}
تەڭلىمىنى يېشىش ئۈچۈن x=0 بىلەن 10x-12=0 نى يېشىڭ.
10x^{2}-12x=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}}}{2\times 10}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 10 نى a گە، -12 نى b گە ۋە 0 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-12\right)±12}{2\times 10}
\left(-12\right)^{2} نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{12±12}{2\times 10}
-12 نىڭ قارشىسى 12 دۇر.
x=\frac{12±12}{20}
2 نى 10 كە كۆپەيتىڭ.
x=\frac{24}{20}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{12±12}{20} نى يېشىڭ. 12 نى 12 گە قوشۇڭ.
x=\frac{6}{5}
4 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{24}{20} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=\frac{0}{20}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{12±12}{20} نى يېشىڭ. 12 دىن 12 نى ئېلىڭ.
x=0
0 نى 20 كە بۆلۈڭ.
x=\frac{6}{5} x=0
تەڭلىمە يېشىلدى.
10x^{2}-12x=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
\frac{10x^{2}-12x}{10}=\frac{0}{10}
ھەر ئىككى تەرەپنى 10 گە بۆلۈڭ.
x^{2}+\left(-\frac{12}{10}\right)x=\frac{0}{10}
10 گە بۆلگەندە 10 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-\frac{6}{5}x=\frac{0}{10}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-12}{10} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x^{2}-\frac{6}{5}x=0
0 نى 10 كە بۆلۈڭ.
x^{2}-\frac{6}{5}x+\left(-\frac{3}{5}\right)^{2}=\left(-\frac{3}{5}\right)^{2}
-\frac{6}{5}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{3}{5} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{3}{5} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-\frac{6}{5}x+\frac{9}{25}=\frac{9}{25}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{3}{5} نىڭ كىۋادراتىنى تېپىڭ.
\left(x-\frac{3}{5}\right)^{2}=\frac{9}{25}
كۆپەيتكۈچى x^{2}-\frac{6}{5}x+\frac{9}{25}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{3}{5}\right)^{2}}=\sqrt{\frac{9}{25}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{3}{5}=\frac{3}{5} x-\frac{3}{5}=-\frac{3}{5}
ئاددىيلاشتۇرۇڭ.
x=\frac{6}{5} x=0
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{3}{5} نى قوشۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}