ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

10x^{2}+x-3=0
ھەر ئىككى تەرەپتىن 3 نى ئېلىڭ.
a+b=1 ab=10\left(-3\right)=-30
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى 10x^{2}+ax+bx-3 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,30 -2,15 -3,10 -5,6
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ھاسىلات -30 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-5 b=6
1 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(10x^{2}-5x\right)+\left(6x-3\right)
10x^{2}+x-3 نى \left(10x^{2}-5x\right)+\left(6x-3\right) شەكلىدە قايتا يېزىڭ.
5x\left(2x-1\right)+3\left(2x-1\right)
بىرىنچى گۇرۇپپىدىن 5x نى، ئىككىنچى گۇرۇپپىدىن 3 نى چىقىرىڭ.
\left(2x-1\right)\left(5x+3\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا 2x-1 نى چىقىرىڭ.
x=\frac{1}{2} x=-\frac{3}{5}
تەڭلىمىنى يېشىش ئۈچۈن 2x-1=0 بىلەن 5x+3=0 نى يېشىڭ.
10x^{2}+x=3
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
10x^{2}+x-3=3-3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 3 نى ئېلىڭ.
10x^{2}+x-3=0
3 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
x=\frac{-1±\sqrt{1^{2}-4\times 10\left(-3\right)}}{2\times 10}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 10 نى a گە، 1 نى b گە ۋە -3 نى c گە ئالماشتۇرۇڭ.
x=\frac{-1±\sqrt{1-4\times 10\left(-3\right)}}{2\times 10}
1 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-1±\sqrt{1-40\left(-3\right)}}{2\times 10}
-4 نى 10 كە كۆپەيتىڭ.
x=\frac{-1±\sqrt{1+120}}{2\times 10}
-40 نى -3 كە كۆپەيتىڭ.
x=\frac{-1±\sqrt{121}}{2\times 10}
1 نى 120 گە قوشۇڭ.
x=\frac{-1±11}{2\times 10}
121 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-1±11}{20}
2 نى 10 كە كۆپەيتىڭ.
x=\frac{10}{20}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-1±11}{20} نى يېشىڭ. -1 نى 11 گە قوشۇڭ.
x=\frac{1}{2}
10 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{10}{20} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=-\frac{12}{20}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-1±11}{20} نى يېشىڭ. -1 دىن 11 نى ئېلىڭ.
x=-\frac{3}{5}
4 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-12}{20} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=\frac{1}{2} x=-\frac{3}{5}
تەڭلىمە يېشىلدى.
10x^{2}+x=3
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
\frac{10x^{2}+x}{10}=\frac{3}{10}
ھەر ئىككى تەرەپنى 10 گە بۆلۈڭ.
x^{2}+\frac{1}{10}x=\frac{3}{10}
10 گە بۆلگەندە 10 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+\frac{1}{10}x+\left(\frac{1}{20}\right)^{2}=\frac{3}{10}+\left(\frac{1}{20}\right)^{2}
\frac{1}{10}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{1}{20} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{20} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+\frac{1}{10}x+\frac{1}{400}=\frac{3}{10}+\frac{1}{400}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{1}{20} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+\frac{1}{10}x+\frac{1}{400}=\frac{121}{400}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{3}{10} نى \frac{1}{400} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x+\frac{1}{20}\right)^{2}=\frac{121}{400}
كۆپەيتكۈچى x^{2}+\frac{1}{10}x+\frac{1}{400}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{1}{20}\right)^{2}}=\sqrt{\frac{121}{400}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{1}{20}=\frac{11}{20} x+\frac{1}{20}=-\frac{11}{20}
ئاددىيلاشتۇرۇڭ.
x=\frac{1}{2} x=-\frac{3}{5}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{1}{20} نى ئېلىڭ.