g نى يېشىش
\left\{\begin{matrix}\\g=0\text{, }&\text{unconditionally}\\g\in \mathrm{R}\text{, }&k=1\end{matrix}\right.
k نى يېشىش
\left\{\begin{matrix}\\k=1\text{, }&\text{unconditionally}\\k\in \mathrm{R}\text{, }&g=0\end{matrix}\right.
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
1kg-g=0
ھەر ئىككى تەرەپتىن g نى ئېلىڭ.
gk-g=0
ئەزالارنى قايتا رەتلەڭ.
\left(k-1\right)g=0
g نى ئۆز ئىچىگە ئالغان بارلىق ئەزالارنى بىرىكتۈرۈڭ.
g=0
0 نى -1+k كە بۆلۈڭ.
gk=g
ئەزالارنى قايتا رەتلەڭ.
\frac{gk}{g}=\frac{g}{g}
ھەر ئىككى تەرەپنى g گە بۆلۈڭ.
k=\frac{g}{g}
g گە بۆلگەندە g گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
k=1
g نى g كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}