x نى يېشىش
x=3
x=-1
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
0=2\left(x-1\right)^{2}-8
x-1 گە x-1 نى كۆپەيتىپ \left(x-1\right)^{2} نى چىقىرىڭ.
0=2\left(x^{2}-2x+1\right)-8
ئىككى ئەزالىقلار تېيورېمىسى \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ئارقىلىق \left(x-1\right)^{2} نى يېيىڭ.
0=2x^{2}-4x+2-8
تارقىتىش قانۇنى بويىچە 2 نى x^{2}-2x+1 گە كۆپەيتىڭ.
0=2x^{2}-4x-6
2 دىن 8 نى ئېلىپ -6 نى چىقىرىڭ.
2x^{2}-4x-6=0
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
x^{2}-2x-3=0
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
a+b=-2 ab=1\left(-3\right)=-3
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى x^{2}+ax+bx-3 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
a=-3 b=1
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مەنپىي، شۇڭا مەنپىي ساننىڭ مۇتلەق قىممىتى مۇسبەت ساننىڭكىدىن چوڭ. ئۇنداق جۈپ پەقەت سىستېما يېشىش ئۇسۇلىدۇر.
\left(x^{2}-3x\right)+\left(x-3\right)
x^{2}-2x-3 نى \left(x^{2}-3x\right)+\left(x-3\right) شەكلىدە قايتا يېزىڭ.
x\left(x-3\right)+x-3
x^{2}-3x دىن x نى چىقىرىڭ.
\left(x-3\right)\left(x+1\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-3 نى چىقىرىڭ.
x=3 x=-1
تەڭلىمىنى يېشىش ئۈچۈن x-3=0 بىلەن x+1=0 نى يېشىڭ.
0=2\left(x-1\right)^{2}-8
x-1 گە x-1 نى كۆپەيتىپ \left(x-1\right)^{2} نى چىقىرىڭ.
0=2\left(x^{2}-2x+1\right)-8
ئىككى ئەزالىقلار تېيورېمىسى \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ئارقىلىق \left(x-1\right)^{2} نى يېيىڭ.
0=2x^{2}-4x+2-8
تارقىتىش قانۇنى بويىچە 2 نى x^{2}-2x+1 گە كۆپەيتىڭ.
0=2x^{2}-4x-6
2 دىن 8 نى ئېلىپ -6 نى چىقىرىڭ.
2x^{2}-4x-6=0
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-6\right)}}{2\times 2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 2 نى a گە، -4 نى b گە ۋە -6 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-6\right)}}{2\times 2}
-4 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-6\right)}}{2\times 2}
-4 نى 2 كە كۆپەيتىڭ.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2\times 2}
-8 نى -6 كە كۆپەيتىڭ.
x=\frac{-\left(-4\right)±\sqrt{64}}{2\times 2}
16 نى 48 گە قوشۇڭ.
x=\frac{-\left(-4\right)±8}{2\times 2}
64 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{4±8}{2\times 2}
-4 نىڭ قارشىسى 4 دۇر.
x=\frac{4±8}{4}
2 نى 2 كە كۆپەيتىڭ.
x=\frac{12}{4}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{4±8}{4} نى يېشىڭ. 4 نى 8 گە قوشۇڭ.
x=3
12 نى 4 كە بۆلۈڭ.
x=-\frac{4}{4}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{4±8}{4} نى يېشىڭ. 4 دىن 8 نى ئېلىڭ.
x=-1
-4 نى 4 كە بۆلۈڭ.
x=3 x=-1
تەڭلىمە يېشىلدى.
0=2\left(x-1\right)^{2}-8
x-1 گە x-1 نى كۆپەيتىپ \left(x-1\right)^{2} نى چىقىرىڭ.
0=2\left(x^{2}-2x+1\right)-8
ئىككى ئەزالىقلار تېيورېمىسى \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ئارقىلىق \left(x-1\right)^{2} نى يېيىڭ.
0=2x^{2}-4x+2-8
تارقىتىش قانۇنى بويىچە 2 نى x^{2}-2x+1 گە كۆپەيتىڭ.
0=2x^{2}-4x-6
2 دىن 8 نى ئېلىپ -6 نى چىقىرىڭ.
2x^{2}-4x-6=0
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
2x^{2}-4x=6
6 نى ھەر ئىككى تەرەپكە قوشۇڭ. ھەرقانداق سانغا نۆل قوشۇلسا نەتىجە شۇ ساننىڭ ئۆزىدۇر.
\frac{2x^{2}-4x}{2}=\frac{6}{2}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x^{2}+\left(-\frac{4}{2}\right)x=\frac{6}{2}
2 گە بۆلگەندە 2 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-2x=\frac{6}{2}
-4 نى 2 كە بۆلۈڭ.
x^{2}-2x=3
6 نى 2 كە بۆلۈڭ.
x^{2}-2x+1=3+1
-2، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -1 نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -1 نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-2x+1=4
3 نى 1 گە قوشۇڭ.
\left(x-1\right)^{2}=4
كۆپەيتكۈچى x^{2}-2x+1. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-1=2 x-1=-2
ئاددىيلاشتۇرۇڭ.
x=3 x=-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 1 نى قوشۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}