ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

4x^{2}-16x-272<0
تەڭسىزلىكنى -1 گە كۆپەيتىپ، -4x^{2}+16x+272 نىڭ ئەڭ چوڭ دەرىجىسىنىڭ كوئېففىتسېنتىنى مۇسبەت سانغا ئۆزگەرتىڭ. -1 مەنپىي بولغاچقا، تەڭسىزلىكنىڭ يۆنىلىشى ئۆزگەرتىلدى.
4x^{2}-16x-272=0
تەڭسىزلىكنى يېشىش ئۈچۈن سول تەرەپنى كۆپەيتىڭ. x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 4\left(-272\right)}}{2\times 4}
ax^{2}+bx+c=0 شەكلىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادراتلىق فورمۇلا ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتلىق فورمۇلادىكى 4 نى a گە، -16 نى b گە ۋە -272 نى c گە ئالماشتۇرۇڭ.
x=\frac{16±48\sqrt{2}}{8}
ھېسابلاڭ.
x=6\sqrt{2}+2 x=2-6\sqrt{2}
x=\frac{16±48\sqrt{2}}{8} دېگەن تەڭلىمىنى ± پىلۇس ۋە ± مىنۇس بولغان ئەھۋاللار ئۈچۈن يېشىڭ.
4\left(x-\left(6\sqrt{2}+2\right)\right)\left(x-\left(2-6\sqrt{2}\right)\right)<0
ئېرىشكەن يېشىش ئۇسۇلى ئارقىلىق تەڭسىزلىكنى قايتا يېزىڭ.
x-\left(6\sqrt{2}+2\right)>0 x-\left(2-6\sqrt{2}\right)<0
ھاسىلاتنىڭ مەنپىي بولۇشى ئۈچۈن x-\left(6\sqrt{2}+2\right) ۋە x-\left(2-6\sqrt{2}\right) نىڭ بەلگىلىرى ئۆزئارا قارمۇ-قارشى بولۇشى كېرەك. x-\left(6\sqrt{2}+2\right) مۇسبەت ۋە x-\left(2-6\sqrt{2}\right) مەنپىي بولغان ئەھۋالنى ئويلىشىڭ.
x\in \emptyset
بۇ ھەرقانداق x ئۈچۈن خاتا.
x-\left(2-6\sqrt{2}\right)>0 x-\left(6\sqrt{2}+2\right)<0
x-\left(2-6\sqrt{2}\right) مۇسبەت ۋە x-\left(6\sqrt{2}+2\right) مەنپىي بولغان ئەھۋالنى ئويلىشىڭ.
x\in \left(2-6\sqrt{2},6\sqrt{2}+2\right)
ھەر ئىككى تەڭسىزلىكنى قانائەتلەندۈرىدىغان يېشىم x\in \left(2-6\sqrt{2},6\sqrt{2}+2\right) دۇر.
x\in \left(2-6\sqrt{2},6\sqrt{2}+2\right)
ئاخىرقى يېشىم ئېرىشكەن يېشىملەرنىڭ بىرىكمىسىدۇر.