ئاساسىي مەزمۇنغا ئاتلاش
كۆپەيتكۈچى
Tick mark Image
ھېسابلاش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=-4 ab=-3\left(-1\right)=3
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى -3x^{2}+ax+bx-1 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
a=-1 b=-3
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مەنپىي، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مەنپىي. ئۇنداق جۈپ پەقەت سىستېما يېشىش ئۇسۇلىدۇر.
\left(-3x^{2}-x\right)+\left(-3x-1\right)
-3x^{2}-4x-1 نى \left(-3x^{2}-x\right)+\left(-3x-1\right) شەكلىدە قايتا يېزىڭ.
-x\left(3x+1\right)-\left(3x+1\right)
بىرىنچى گۇرۇپپىدىن -x نى، ئىككىنچى گۇرۇپپىدىن -1 نى چىقىرىڭ.
\left(3x+1\right)\left(-x-1\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا 3x+1 نى چىقىرىڭ.
-3x^{2}-4x-1=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-3\right)\left(-1\right)}}{2\left(-3\right)}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-3\right)\left(-1\right)}}{2\left(-3\right)}
-4 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-4\right)±\sqrt{16+12\left(-1\right)}}{2\left(-3\right)}
-4 نى -3 كە كۆپەيتىڭ.
x=\frac{-\left(-4\right)±\sqrt{16-12}}{2\left(-3\right)}
12 نى -1 كە كۆپەيتىڭ.
x=\frac{-\left(-4\right)±\sqrt{4}}{2\left(-3\right)}
16 نى -12 گە قوشۇڭ.
x=\frac{-\left(-4\right)±2}{2\left(-3\right)}
4 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{4±2}{2\left(-3\right)}
-4 نىڭ قارشىسى 4 دۇر.
x=\frac{4±2}{-6}
2 نى -3 كە كۆپەيتىڭ.
x=\frac{6}{-6}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{4±2}{-6} نى يېشىڭ. 4 نى 2 گە قوشۇڭ.
x=-1
6 نى -6 كە بۆلۈڭ.
x=\frac{2}{-6}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{4±2}{-6} نى يېشىڭ. 4 دىن 2 نى ئېلىڭ.
x=-\frac{1}{3}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{2}{-6} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
-3x^{2}-4x-1=-3\left(x-\left(-1\right)\right)\left(x-\left(-\frac{1}{3}\right)\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. -1 نى x_{1} گە ۋە -\frac{1}{3} نى x_{2} گە ئالماشتۇرۇڭ.
-3x^{2}-4x-1=-3\left(x+1\right)\left(x+\frac{1}{3}\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.
-3x^{2}-4x-1=-3\left(x+1\right)\times \frac{-3x-1}{-3}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{1}{3} نى x گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
-3x^{2}-4x-1=\left(x+1\right)\left(-3x-1\right)
-3 بىلەن 3 دىكى ئەڭ چوڭ ئومۇمىي بۆلگۈچى 3 نى يېيىشتۈرۈڭ.