ئاساسىي مەزمۇنغا ئاتلاش
كۆپەيتكۈچى
Tick mark Image
ھېسابلاش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=-11 ab=-60=-60
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى -x^{2}+ax+bx+60 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مەنپىي، شۇڭا مەنپىي ساننىڭ مۇتلەق قىممىتى مۇسبەت ساننىڭكىدىن چوڭ. ھاسىلات -60 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=4 b=-15
-11 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(-x^{2}+4x\right)+\left(-15x+60\right)
-x^{2}-11x+60 نى \left(-x^{2}+4x\right)+\left(-15x+60\right) شەكلىدە قايتا يېزىڭ.
x\left(-x+4\right)+15\left(-x+4\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 15 نى چىقىرىڭ.
\left(-x+4\right)\left(x+15\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا -x+4 نى چىقىرىڭ.
-x^{2}-11x+60=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-1\right)\times 60}}{2\left(-1\right)}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-1\right)\times 60}}{2\left(-1\right)}
-11 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-11\right)±\sqrt{121+4\times 60}}{2\left(-1\right)}
-4 نى -1 كە كۆپەيتىڭ.
x=\frac{-\left(-11\right)±\sqrt{121+240}}{2\left(-1\right)}
4 نى 60 كە كۆپەيتىڭ.
x=\frac{-\left(-11\right)±\sqrt{361}}{2\left(-1\right)}
121 نى 240 گە قوشۇڭ.
x=\frac{-\left(-11\right)±19}{2\left(-1\right)}
361 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{11±19}{2\left(-1\right)}
-11 نىڭ قارشىسى 11 دۇر.
x=\frac{11±19}{-2}
2 نى -1 كە كۆپەيتىڭ.
x=\frac{30}{-2}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{11±19}{-2} نى يېشىڭ. 11 نى 19 گە قوشۇڭ.
x=-15
30 نى -2 كە بۆلۈڭ.
x=-\frac{8}{-2}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{11±19}{-2} نى يېشىڭ. 11 دىن 19 نى ئېلىڭ.
x=4
-8 نى -2 كە بۆلۈڭ.
-x^{2}-11x+60=-\left(x-\left(-15\right)\right)\left(x-4\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. -15 نى x_{1} گە ۋە 4 نى x_{2} گە ئالماشتۇرۇڭ.
-x^{2}-11x+60=-\left(x+15\right)\left(x-4\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.