x نى يېشىش
x=-3
x=5
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
a+b=2 ab=-15=-15
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى -x^{2}+ax+bx+15 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,15 -3,5
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ھاسىلات -15 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1+15=14 -3+5=2
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=5 b=-3
2 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(-x^{2}+5x\right)+\left(-3x+15\right)
-x^{2}+2x+15 نى \left(-x^{2}+5x\right)+\left(-3x+15\right) شەكلىدە قايتا يېزىڭ.
-x\left(x-5\right)-3\left(x-5\right)
بىرىنچى گۇرۇپپىدىن -x نى، ئىككىنچى گۇرۇپپىدىن -3 نى چىقىرىڭ.
\left(x-5\right)\left(-x-3\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-5 نى چىقىرىڭ.
x=5 x=-3
تەڭلىمىنى يېشىش ئۈچۈن x-5=0 بىلەن -x-3=0 نى يېشىڭ.
-x^{2}+2x+15=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 15}}{2\left(-1\right)}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا -1 نى a گە، 2 نى b گە ۋە 15 نى c گە ئالماشتۇرۇڭ.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 15}}{2\left(-1\right)}
2 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-2±\sqrt{4+4\times 15}}{2\left(-1\right)}
-4 نى -1 كە كۆپەيتىڭ.
x=\frac{-2±\sqrt{4+60}}{2\left(-1\right)}
4 نى 15 كە كۆپەيتىڭ.
x=\frac{-2±\sqrt{64}}{2\left(-1\right)}
4 نى 60 گە قوشۇڭ.
x=\frac{-2±8}{2\left(-1\right)}
64 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-2±8}{-2}
2 نى -1 كە كۆپەيتىڭ.
x=\frac{6}{-2}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-2±8}{-2} نى يېشىڭ. -2 نى 8 گە قوشۇڭ.
x=-3
6 نى -2 كە بۆلۈڭ.
x=-\frac{10}{-2}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-2±8}{-2} نى يېشىڭ. -2 دىن 8 نى ئېلىڭ.
x=5
-10 نى -2 كە بۆلۈڭ.
x=-3 x=5
تەڭلىمە يېشىلدى.
-x^{2}+2x+15=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
-x^{2}+2x+15-15=-15
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 15 نى ئېلىڭ.
-x^{2}+2x=-15
15 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
\frac{-x^{2}+2x}{-1}=-\frac{15}{-1}
ھەر ئىككى تەرەپنى -1 گە بۆلۈڭ.
x^{2}+\frac{2}{-1}x=-\frac{15}{-1}
-1 گە بۆلگەندە -1 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-2x=-\frac{15}{-1}
2 نى -1 كە بۆلۈڭ.
x^{2}-2x=15
-15 نى -1 كە بۆلۈڭ.
x^{2}-2x+1=15+1
-2، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -1 نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -1 نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-2x+1=16
15 نى 1 گە قوشۇڭ.
\left(x-1\right)^{2}=16
كۆپەيتكۈچى x^{2}-2x+1. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-1\right)^{2}}=\sqrt{16}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-1=4 x-1=-4
ئاددىيلاشتۇرۇڭ.
x=5 x=-3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 1 نى قوشۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}