b نى يېشىش
\left\{\begin{matrix}b=\frac{a}{3}\text{, }&a\leq 0\\b\in \mathrm{R}\text{, }&a=0\end{matrix}\right.
a نى يېشىش (complex solution)
\left\{\begin{matrix}\\a=0\text{, }&\text{unconditionally}\\a=3b\text{, }&arg(b)\geq \pi \text{ or }b=0\end{matrix}\right.
b نى يېشىش (complex solution)
\left\{\begin{matrix}b=\frac{a}{3}\text{, }&arg(a)\geq \pi \text{ or }a=0\\b\in \mathrm{C}\text{, }&a=0\end{matrix}\right.
a نى يېشىش
\left\{\begin{matrix}\\a=0\text{, }&\text{unconditionally}\\a=3b\text{, }&b\leq 0\end{matrix}\right.
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\sqrt{2a^{2}-3ab}=-a
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
\left(-3a\right)b+2a^{2}=a^{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادراتىنى چىقىرىڭ.
\left(-3a\right)b+2a^{2}-2a^{2}=a^{2}-2a^{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 2a^{2} نى ئېلىڭ.
\left(-3a\right)b=a^{2}-2a^{2}
2a^{2} دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
\left(-3a\right)b=-a^{2}
a^{2} دىن 2a^{2} نى ئېلىڭ.
\frac{\left(-3a\right)b}{-3a}=-\frac{a^{2}}{-3a}
ھەر ئىككى تەرەپنى -3a گە بۆلۈڭ.
b=-\frac{a^{2}}{-3a}
-3a گە بۆلگەندە -3a گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
b=\frac{a}{3}
-a^{2} نى -3a كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}