كۆپەيتكۈچى
\left(3-4x\right)\left(3x+2\right)
ھېسابلاش
6+x-12x^{2}
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
a+b=1 ab=-12\times 6=-72
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى -12x^{2}+ax+bx+6 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ھاسىلات -72 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=9 b=-8
1 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(-12x^{2}+9x\right)+\left(-8x+6\right)
-12x^{2}+x+6 نى \left(-12x^{2}+9x\right)+\left(-8x+6\right) شەكلىدە قايتا يېزىڭ.
3x\left(-4x+3\right)+2\left(-4x+3\right)
بىرىنچى گۇرۇپپىدىن 3x نى، ئىككىنچى گۇرۇپپىدىن 2 نى چىقىرىڭ.
\left(-4x+3\right)\left(3x+2\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا -4x+3 نى چىقىرىڭ.
-12x^{2}+x+6=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-1±\sqrt{1^{2}-4\left(-12\right)\times 6}}{2\left(-12\right)}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-1±\sqrt{1-4\left(-12\right)\times 6}}{2\left(-12\right)}
1 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-1±\sqrt{1+48\times 6}}{2\left(-12\right)}
-4 نى -12 كە كۆپەيتىڭ.
x=\frac{-1±\sqrt{1+288}}{2\left(-12\right)}
48 نى 6 كە كۆپەيتىڭ.
x=\frac{-1±\sqrt{289}}{2\left(-12\right)}
1 نى 288 گە قوشۇڭ.
x=\frac{-1±17}{2\left(-12\right)}
289 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-1±17}{-24}
2 نى -12 كە كۆپەيتىڭ.
x=\frac{16}{-24}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-1±17}{-24} نى يېشىڭ. -1 نى 17 گە قوشۇڭ.
x=-\frac{2}{3}
8 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{16}{-24} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=-\frac{18}{-24}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-1±17}{-24} نى يېشىڭ. -1 دىن 17 نى ئېلىڭ.
x=\frac{3}{4}
6 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-18}{-24} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
-12x^{2}+x+6=-12\left(x-\left(-\frac{2}{3}\right)\right)\left(x-\frac{3}{4}\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. -\frac{2}{3} نى x_{1} گە ۋە \frac{3}{4} نى x_{2} گە ئالماشتۇرۇڭ.
-12x^{2}+x+6=-12\left(x+\frac{2}{3}\right)\left(x-\frac{3}{4}\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.
-12x^{2}+x+6=-12\times \frac{-3x-2}{-3}\left(x-\frac{3}{4}\right)
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{2}{3} نى x گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
-12x^{2}+x+6=-12\times \frac{-3x-2}{-3}\times \frac{-4x+3}{-4}
ئومۇمىي مەخرەجنى تېپىش ۋە سۈرەتلەرنى ئېلىش ئارقىلىق x دىن \frac{3}{4} نى ئېلىپ، كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
-12x^{2}+x+6=-12\times \frac{\left(-3x-2\right)\left(-4x+3\right)}{-3\left(-4\right)}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{-3x-2}{-3} نى \frac{-4x+3}{-4} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
-12x^{2}+x+6=-12\times \frac{\left(-3x-2\right)\left(-4x+3\right)}{12}
-3 نى -4 كە كۆپەيتىڭ.
-12x^{2}+x+6=-\left(-3x-2\right)\left(-4x+3\right)
-12 بىلەن 12 دىكى ئەڭ چوڭ ئومۇمىي بۆلگۈچى 12 نى يېيىشتۈرۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}