ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=2 ab=-\left(-1\right)=1
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى -x^{2}+ax+bx-1 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
a=1 b=1
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مۇسبەت، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مۇسبەت. ئۇنداق جۈپ پەقەت سىستېما يېشىش ئۇسۇلىدۇر.
\left(-x^{2}+x\right)+\left(x-1\right)
-x^{2}+2x-1 نى \left(-x^{2}+x\right)+\left(x-1\right) شەكلىدە قايتا يېزىڭ.
-x\left(x-1\right)+x-1
-x^{2}+x دىن -x نى چىقىرىڭ.
\left(x-1\right)\left(-x+1\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-1 نى چىقىرىڭ.
x=1 x=1
تەڭلىمىنى يېشىش ئۈچۈن x-1=0 بىلەن -x+1=0 نى يېشىڭ.
-x^{2}+2x-1=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا -1 نى a گە، 2 نى b گە ۋە -1 نى c گە ئالماشتۇرۇڭ.
x=\frac{-2±\sqrt{4-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
2 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-2±\sqrt{4+4\left(-1\right)}}{2\left(-1\right)}
-4 نى -1 كە كۆپەيتىڭ.
x=\frac{-2±\sqrt{4-4}}{2\left(-1\right)}
4 نى -1 كە كۆپەيتىڭ.
x=\frac{-2±\sqrt{0}}{2\left(-1\right)}
4 نى -4 گە قوشۇڭ.
x=-\frac{2}{2\left(-1\right)}
0 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=-\frac{2}{-2}
2 نى -1 كە كۆپەيتىڭ.
x=1
-2 نى -2 كە بۆلۈڭ.
-x^{2}+2x-1=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
-x^{2}+2x-1-\left(-1\right)=-\left(-1\right)
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 1 نى قوشۇڭ.
-x^{2}+2x=-\left(-1\right)
-1 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
-x^{2}+2x=1
0 دىن -1 نى ئېلىڭ.
\frac{-x^{2}+2x}{-1}=\frac{1}{-1}
ھەر ئىككى تەرەپنى -1 گە بۆلۈڭ.
x^{2}+\frac{2}{-1}x=\frac{1}{-1}
-1 گە بۆلگەندە -1 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-2x=\frac{1}{-1}
2 نى -1 كە بۆلۈڭ.
x^{2}-2x=-1
1 نى -1 كە بۆلۈڭ.
x^{2}-2x+1=-1+1
-2، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -1 نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -1 نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-2x+1=0
-1 نى 1 گە قوشۇڭ.
\left(x-1\right)^{2}=0
كۆپەيتكۈچى x^{2}-2x+1. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-1\right)^{2}}=\sqrt{0}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-1=0 x-1=0
ئاددىيلاشتۇرۇڭ.
x=1 x=1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 1 نى قوشۇڭ.
x=1
تەڭلىمە يېشىلدى. يېشىش ئۇسۇلى ئوخشاش.