ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

2x^{2}-11x+12=18
تارقىتىش قانۇنى بويىچە 2x-3 نى x-4 گە كۆپەيتىپ، ئوخشاش ئەزالارنى بىرىكتۈرۈڭ.
2x^{2}-11x+12-18=0
ھەر ئىككى تەرەپتىن 18 نى ئېلىڭ.
2x^{2}-11x-6=0
12 دىن 18 نى ئېلىپ -6 نى چىقىرىڭ.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 2\left(-6\right)}}{2\times 2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 2 نى a گە، -11 نى b گە ۋە -6 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 2\left(-6\right)}}{2\times 2}
-11 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-11\right)±\sqrt{121-8\left(-6\right)}}{2\times 2}
-4 نى 2 كە كۆپەيتىڭ.
x=\frac{-\left(-11\right)±\sqrt{121+48}}{2\times 2}
-8 نى -6 كە كۆپەيتىڭ.
x=\frac{-\left(-11\right)±\sqrt{169}}{2\times 2}
121 نى 48 گە قوشۇڭ.
x=\frac{-\left(-11\right)±13}{2\times 2}
169 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{11±13}{2\times 2}
-11 نىڭ قارشىسى 11 دۇر.
x=\frac{11±13}{4}
2 نى 2 كە كۆپەيتىڭ.
x=\frac{24}{4}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{11±13}{4} نى يېشىڭ. 11 نى 13 گە قوشۇڭ.
x=6
24 نى 4 كە بۆلۈڭ.
x=-\frac{2}{4}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{11±13}{4} نى يېشىڭ. 11 دىن 13 نى ئېلىڭ.
x=-\frac{1}{2}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-2}{4} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=6 x=-\frac{1}{2}
تەڭلىمە يېشىلدى.
2x^{2}-11x+12=18
تارقىتىش قانۇنى بويىچە 2x-3 نى x-4 گە كۆپەيتىپ، ئوخشاش ئەزالارنى بىرىكتۈرۈڭ.
2x^{2}-11x=18-12
ھەر ئىككى تەرەپتىن 12 نى ئېلىڭ.
2x^{2}-11x=6
18 دىن 12 نى ئېلىپ 6 نى چىقىرىڭ.
\frac{2x^{2}-11x}{2}=\frac{6}{2}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x^{2}-\frac{11}{2}x=\frac{6}{2}
2 گە بۆلگەندە 2 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-\frac{11}{2}x=3
6 نى 2 كە بۆلۈڭ.
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=3+\left(-\frac{11}{4}\right)^{2}
-\frac{11}{2}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{11}{4} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{11}{4} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-\frac{11}{2}x+\frac{121}{16}=3+\frac{121}{16}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{11}{4} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-\frac{11}{2}x+\frac{121}{16}=\frac{169}{16}
3 نى \frac{121}{16} گە قوشۇڭ.
\left(x-\frac{11}{4}\right)^{2}=\frac{169}{16}
كۆپەيتكۈچى x^{2}-\frac{11}{2}x+\frac{121}{16}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{\frac{169}{16}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{11}{4}=\frac{13}{4} x-\frac{11}{4}=-\frac{13}{4}
ئاددىيلاشتۇرۇڭ.
x=6 x=-\frac{1}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{11}{4} نى قوشۇڭ.