( y + \frac { y ^ { 3 } } { 3 } + \frac { x ^ { 2 } } { 2 } ) d x + \frac { 1 } { 4 } ( x + x y ^ { 2 } ) d y = 0
d نى يېشىش
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&x=0\text{ or }y=\frac{7^{\frac{2}{3}}}{7}\left(\sqrt[3]{\frac{\sqrt{441x^{4}+875}}{7}-3x^{2}}-\sqrt[3]{\frac{\sqrt{441x^{4}+875}}{7}+3x^{2}}\right)\end{matrix}\right.
x نى يېشىش
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x=\frac{\sqrt{-42y^{3}-90y}}{6}\text{; }x=-\frac{\sqrt{-42y^{3}-90y}}{6}\text{, }&y\leq 0\\x\in \mathrm{R}\text{, }&d=0\end{matrix}\right.
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
12\left(y+\frac{y^{3}}{3}+\frac{x^{2}}{2}\right)dx+3\left(x+xy^{2}\right)dy=0
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 3,2,4 نىڭ ئەڭ كىچىك ئومۇمىي بۆلگۈچىسى 12 گە كۆپەيتىڭ.
12\left(y+\frac{2y^{3}}{6}+\frac{3x^{2}}{6}\right)dx+3\left(x+xy^{2}\right)dy=0
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. 3 بىلەن 2 نىڭ ئەڭ كىچىك ئومۇمىي ھەسسىلىكى 6 دۇر. \frac{y^{3}}{3} نى \frac{2}{2} كە كۆپەيتىڭ. \frac{x^{2}}{2} نى \frac{3}{3} كە كۆپەيتىڭ.
12\left(y+\frac{2y^{3}+3x^{2}}{6}\right)dx+3\left(x+xy^{2}\right)dy=0
\frac{2y^{3}}{6} بىلەن \frac{3x^{2}}{6} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى قوشۇش ئارقىلىق قوشسىڭىز بولىدۇ.
\left(12y+12\times \frac{2y^{3}+3x^{2}}{6}\right)dx+3\left(x+xy^{2}\right)dy=0
تارقىتىش قانۇنى بويىچە 12 نى y+\frac{2y^{3}+3x^{2}}{6} گە كۆپەيتىڭ.
\left(12y+2\left(2y^{3}+3x^{2}\right)\right)dx+3\left(x+xy^{2}\right)dy=0
12 بىلەن 6 دىكى ئەڭ چوڭ ئومۇمىي بۆلگۈچى 6 نى يېيىشتۈرۈڭ.
\left(12y+4y^{3}+6x^{2}\right)dx+3\left(x+xy^{2}\right)dy=0
تارقىتىش قانۇنى بويىچە 2 نى 2y^{3}+3x^{2} گە كۆپەيتىڭ.
\left(12yd+4y^{3}d+6x^{2}d\right)x+3\left(x+xy^{2}\right)dy=0
تارقىتىش قانۇنى بويىچە 12y+4y^{3}+6x^{2} نى d گە كۆپەيتىڭ.
12ydx+4y^{3}dx+6dx^{3}+3\left(x+xy^{2}\right)dy=0
تارقىتىش قانۇنى بويىچە 12yd+4y^{3}d+6x^{2}d نى x گە كۆپەيتىڭ.
12ydx+4y^{3}dx+6dx^{3}+\left(3x+3xy^{2}\right)dy=0
تارقىتىش قانۇنى بويىچە 3 نى x+xy^{2} گە كۆپەيتىڭ.
12ydx+4y^{3}dx+6dx^{3}+\left(3xd+3xy^{2}d\right)y=0
تارقىتىش قانۇنى بويىچە 3x+3xy^{2} نى d گە كۆپەيتىڭ.
12ydx+4y^{3}dx+6dx^{3}+3xdy+3xdy^{3}=0
تارقىتىش قانۇنى بويىچە 3xd+3xy^{2}d نى y گە كۆپەيتىڭ.
15ydx+4y^{3}dx+6dx^{3}+3xdy^{3}=0
12ydx بىلەن 3xdy نى بىرىكتۈرۈپ 15ydx نى چىقىرىڭ.
15ydx+7y^{3}dx+6dx^{3}=0
4y^{3}dx بىلەن 3xdy^{3} نى بىرىكتۈرۈپ 7y^{3}dx نى چىقىرىڭ.
\left(15yx+7y^{3}x+6x^{3}\right)d=0
d نى ئۆز ئىچىگە ئالغان بارلىق ئەزالارنى بىرىكتۈرۈڭ.
\left(6x^{3}+7xy^{3}+15xy\right)d=0
تەڭلىمە ئۆلچەملىك بولدى.
d=0
0 نى 15yx+7y^{3}x+6x^{3} كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}