x نى يېشىش (complex solution)
x=6
x=2\sqrt{3}i\approx 3.464101615i
x=-2\sqrt{3}i\approx -0-3.464101615i
x نى يېشىش
x=6
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
x^{3}-6x^{2}+12x-8=64
ئىككى ئەزالىقلار تېيورېمىسى \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} ئارقىلىق \left(x-2\right)^{3} نى يېيىڭ.
x^{3}-6x^{2}+12x-8-64=0
ھەر ئىككى تەرەپتىن 64 نى ئېلىڭ.
x^{3}-6x^{2}+12x-72=0
-8 دىن 64 نى ئېلىپ -72 نى چىقىرىڭ.
±72,±36,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
راتسىيونال يىلتىز تېيورمىسى بويىچە بارلىق كۆپ ئەزالىقنىڭ راتسىيونال يىلتىزى \frac{p}{q} دېگەن شەكىلدە بولىدۇ، p تۇراقلىق ئەزا -72 نى بۆلىدۇ، q باش كوئېففىتسېنت 1 نى بۆلىدۇ. بارلىق نامزات \frac{p}{q} نى تىزىڭ.
x=6
بارلىق پۈتۈن سانلىق قىممەتنى كىچىكتىن باشلاپ مۇتلەق قىممەت بويىچە سىناپ ئوخشاش يىلتىز تېپىڭ. پۈتۈن يىلتىز تېپىلمىسا، كەسىرنى سىناپ بېقىڭ.
x^{2}+12=0
كۆپەيتىش تېيورمىسى بويىچە، x-k ھەر بىر يىلتىز k نىڭ كۆپ ئەزالىق كۆپەيتكۈچىسىدۇر. x^{3}-6x^{2}+12x-72 نى x-6 گە بۆلۈپ x^{2}+12 نى چىقىرىڭ. تەڭلىمىنى نەتىجە 0 گە تەڭ شەكىلدە يېشىڭ.
x=\frac{0±\sqrt{0^{2}-4\times 1\times 12}}{2}
ax^{2}+bx+c=0 شەكلىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادراتلىق فورمۇلا ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتلىق فورمۇلادىكى 1 نى a گە، 0 نى b گە ۋە 12 نى c گە ئالماشتۇرۇڭ.
x=\frac{0±\sqrt{-48}}{2}
ھېسابلاڭ.
x=-2i\sqrt{3} x=2i\sqrt{3}
x^{2}+12=0 دېگەن تەڭلىمىنى ± پىلۇس ۋە ± مىنۇس بولغان ئەھۋاللار ئۈچۈن يېشىڭ.
x=6 x=-2i\sqrt{3} x=2i\sqrt{3}
بارلىق يېشىمنى تىزىڭ.
x^{3}-6x^{2}+12x-8=64
ئىككى ئەزالىقلار تېيورېمىسى \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} ئارقىلىق \left(x-2\right)^{3} نى يېيىڭ.
x^{3}-6x^{2}+12x-8-64=0
ھەر ئىككى تەرەپتىن 64 نى ئېلىڭ.
x^{3}-6x^{2}+12x-72=0
-8 دىن 64 نى ئېلىپ -72 نى چىقىرىڭ.
±72,±36,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
راتسىيونال يىلتىز تېيورمىسى بويىچە بارلىق كۆپ ئەزالىقنىڭ راتسىيونال يىلتىزى \frac{p}{q} دېگەن شەكىلدە بولىدۇ، p تۇراقلىق ئەزا -72 نى بۆلىدۇ، q باش كوئېففىتسېنت 1 نى بۆلىدۇ. بارلىق نامزات \frac{p}{q} نى تىزىڭ.
x=6
بارلىق پۈتۈن سانلىق قىممەتنى كىچىكتىن باشلاپ مۇتلەق قىممەت بويىچە سىناپ ئوخشاش يىلتىز تېپىڭ. پۈتۈن يىلتىز تېپىلمىسا، كەسىرنى سىناپ بېقىڭ.
x^{2}+12=0
كۆپەيتىش تېيورمىسى بويىچە، x-k ھەر بىر يىلتىز k نىڭ كۆپ ئەزالىق كۆپەيتكۈچىسىدۇر. x^{3}-6x^{2}+12x-72 نى x-6 گە بۆلۈپ x^{2}+12 نى چىقىرىڭ. تەڭلىمىنى نەتىجە 0 گە تەڭ شەكىلدە يېشىڭ.
x=\frac{0±\sqrt{0^{2}-4\times 1\times 12}}{2}
ax^{2}+bx+c=0 شەكلىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادراتلىق فورمۇلا ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتلىق فورمۇلادىكى 1 نى a گە، 0 نى b گە ۋە 12 نى c گە ئالماشتۇرۇڭ.
x=\frac{0±\sqrt{-48}}{2}
ھېسابلاڭ.
x\in \emptyset
مەنپىي ساننىڭ كىۋادرات يىلتىزى ھەقىقىي قىسىمدا ئېنىقلانمىغاچقا يېشىم يوق.
x=6
بارلىق يېشىمنى تىزىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}