ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش (complex solution)
Tick mark Image
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

x^{3}-6x^{2}+12x-8=64
ئىككى ئەزالىقلار تېيورېمىسى \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} ئارقىلىق \left(x-2\right)^{3} نى يېيىڭ.
x^{3}-6x^{2}+12x-8-64=0
ھەر ئىككى تەرەپتىن 64 نى ئېلىڭ.
x^{3}-6x^{2}+12x-72=0
-8 دىن 64 نى ئېلىپ -72 نى چىقىرىڭ.
±72,±36,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
راتسىيونال يىلتىز تېيورمىسى بويىچە بارلىق كۆپ ئەزالىقنىڭ راتسىيونال يىلتىزى \frac{p}{q} دېگەن شەكىلدە بولىدۇ، p تۇراقلىق ئەزا -72 نى بۆلىدۇ، q باش كوئېففىتسېنت 1 نى بۆلىدۇ. بارلىق نامزات \frac{p}{q} نى تىزىڭ.
x=6
بارلىق پۈتۈن سانلىق قىممەتنى كىچىكتىن باشلاپ مۇتلەق قىممەت بويىچە سىناپ ئوخشاش يىلتىز تېپىڭ. پۈتۈن يىلتىز تېپىلمىسا، كەسىرنى سىناپ بېقىڭ.
x^{2}+12=0
كۆپەيتىش تېيورمىسى بويىچە، x-k ھەر بىر يىلتىز k نىڭ كۆپ ئەزالىق كۆپەيتكۈچىسىدۇر. x^{3}-6x^{2}+12x-72 نى x-6 گە بۆلۈپ x^{2}+12 نى چىقىرىڭ. تەڭلىمىنى نەتىجە 0 گە تەڭ شەكىلدە يېشىڭ.
x=\frac{0±\sqrt{0^{2}-4\times 1\times 12}}{2}
ax^{2}+bx+c=0 شەكلىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادراتلىق فورمۇلا ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتلىق فورمۇلادىكى 1 نى a گە، 0 نى b گە ۋە 12 نى c گە ئالماشتۇرۇڭ.
x=\frac{0±\sqrt{-48}}{2}
ھېسابلاڭ.
x=-2i\sqrt{3} x=2i\sqrt{3}
x^{2}+12=0 دېگەن تەڭلىمىنى ± پىلۇس ۋە ± مىنۇس بولغان ئەھۋاللار ئۈچۈن يېشىڭ.
x=6 x=-2i\sqrt{3} x=2i\sqrt{3}
بارلىق يېشىمنى تىزىڭ.
x^{3}-6x^{2}+12x-8=64
ئىككى ئەزالىقلار تېيورېمىسى \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} ئارقىلىق \left(x-2\right)^{3} نى يېيىڭ.
x^{3}-6x^{2}+12x-8-64=0
ھەر ئىككى تەرەپتىن 64 نى ئېلىڭ.
x^{3}-6x^{2}+12x-72=0
-8 دىن 64 نى ئېلىپ -72 نى چىقىرىڭ.
±72,±36,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
راتسىيونال يىلتىز تېيورمىسى بويىچە بارلىق كۆپ ئەزالىقنىڭ راتسىيونال يىلتىزى \frac{p}{q} دېگەن شەكىلدە بولىدۇ، p تۇراقلىق ئەزا -72 نى بۆلىدۇ، q باش كوئېففىتسېنت 1 نى بۆلىدۇ. بارلىق نامزات \frac{p}{q} نى تىزىڭ.
x=6
بارلىق پۈتۈن سانلىق قىممەتنى كىچىكتىن باشلاپ مۇتلەق قىممەت بويىچە سىناپ ئوخشاش يىلتىز تېپىڭ. پۈتۈن يىلتىز تېپىلمىسا، كەسىرنى سىناپ بېقىڭ.
x^{2}+12=0
كۆپەيتىش تېيورمىسى بويىچە، x-k ھەر بىر يىلتىز k نىڭ كۆپ ئەزالىق كۆپەيتكۈچىسىدۇر. x^{3}-6x^{2}+12x-72 نى x-6 گە بۆلۈپ x^{2}+12 نى چىقىرىڭ. تەڭلىمىنى نەتىجە 0 گە تەڭ شەكىلدە يېشىڭ.
x=\frac{0±\sqrt{0^{2}-4\times 1\times 12}}{2}
ax^{2}+bx+c=0 شەكلىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادراتلىق فورمۇلا ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتلىق فورمۇلادىكى 1 نى a گە، 0 نى b گە ۋە 12 نى c گە ئالماشتۇرۇڭ.
x=\frac{0±\sqrt{-48}}{2}
ھېسابلاڭ.
x\in \emptyset
مەنپىي ساننىڭ كىۋادرات يىلتىزى ھەقىقىي قىسىمدا ئېنىقلانمىغاچقا يېشىم يوق.
x=6
بارلىق يېشىمنى تىزىڭ.