ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\left(x^{2}\right)^{2}-2x^{2}x+x^{2}+2x\left(x^{2}-1\right)=\left(x-1\right)^{2}\left(x+1\right)^{2}
ئىككى ئەزالىقلار تېيورېمىسى \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ئارقىلىق \left(x^{2}-x\right)^{2} نى يېيىڭ.
x^{4}-2x^{2}x+x^{2}+2x\left(x^{2}-1\right)=\left(x-1\right)^{2}\left(x+1\right)^{2}
مەلۇم ساننىڭ دەرىجىسىنى كۆتۈرۈش ئۈچۈن دەرىجە كۆرسەتكۈچىنى كۆپەيتىڭ. 2 بىلەن 2 نى كۆپەيتىپ، 4 نى تېپىڭ.
x^{4}-2x^{3}+x^{2}+2x\left(x^{2}-1\right)=\left(x-1\right)^{2}\left(x+1\right)^{2}
ئوخشاش ئاساسنىڭ دەرىجىسىنى كۆپەيتىش ئۈچۈن ئۇلارنىڭ دەرىجە كۆرسەتكۈچلىرىنى قوشۇڭ. 2 بىلەن 1 نى قوشۇپ، 3 نى چىقىرىڭ.
x^{4}-2x^{3}+x^{2}+2x^{3}-2x=\left(x-1\right)^{2}\left(x+1\right)^{2}
تارقىتىش قانۇنى بويىچە 2x نى x^{2}-1 گە كۆپەيتىڭ.
x^{4}+x^{2}-2x=\left(x-1\right)^{2}\left(x+1\right)^{2}
-2x^{3} بىلەن 2x^{3} نى بىرىكتۈرۈپ 0 نى چىقىرىڭ.
x^{4}+x^{2}-2x=\left(x^{2}-2x+1\right)\left(x+1\right)^{2}
ئىككى ئەزالىقلار تېيورېمىسى \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ئارقىلىق \left(x-1\right)^{2} نى يېيىڭ.
x^{4}+x^{2}-2x=\left(x^{2}-2x+1\right)\left(x^{2}+2x+1\right)
ئىككى ئەزالىقلار تېيورېمىسى \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ئارقىلىق \left(x+1\right)^{2} نى يېيىڭ.
x^{4}+x^{2}-2x=x^{4}-2x^{2}+1
تارقىتىش قانۇنى بويىچە x^{2}-2x+1 نى x^{2}+2x+1 گە كۆپەيتىپ، ئوخشاش ئەزالارنى بىرىكتۈرۈڭ.
x^{4}+x^{2}-2x-x^{4}=-2x^{2}+1
ھەر ئىككى تەرەپتىن x^{4} نى ئېلىڭ.
x^{2}-2x=-2x^{2}+1
x^{4} بىلەن -x^{4} نى بىرىكتۈرۈپ 0 نى چىقىرىڭ.
x^{2}-2x+2x^{2}=1
2x^{2} نى ھەر ئىككى تەرەپكە قوشۇڭ.
3x^{2}-2x=1
x^{2} بىلەن 2x^{2} نى بىرىكتۈرۈپ 3x^{2} نى چىقىرىڭ.
3x^{2}-2x-1=0
ھەر ئىككى تەرەپتىن 1 نى ئېلىڭ.
a+b=-2 ab=3\left(-1\right)=-3
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى 3x^{2}+ax+bx-1 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
a=-3 b=1
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مەنپىي، شۇڭا مەنپىي ساننىڭ مۇتلەق قىممىتى مۇسبەت ساننىڭكىدىن چوڭ. ئۇنداق جۈپ پەقەت سىستېما يېشىش ئۇسۇلىدۇر.
\left(3x^{2}-3x\right)+\left(x-1\right)
3x^{2}-2x-1 نى \left(3x^{2}-3x\right)+\left(x-1\right) شەكلىدە قايتا يېزىڭ.
3x\left(x-1\right)+x-1
3x^{2}-3x دىن 3x نى چىقىرىڭ.
\left(x-1\right)\left(3x+1\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-1 نى چىقىرىڭ.
x=1 x=-\frac{1}{3}
تەڭلىمىنى يېشىش ئۈچۈن x-1=0 بىلەن 3x+1=0 نى يېشىڭ.
\left(x^{2}\right)^{2}-2x^{2}x+x^{2}+2x\left(x^{2}-1\right)=\left(x-1\right)^{2}\left(x+1\right)^{2}
ئىككى ئەزالىقلار تېيورېمىسى \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ئارقىلىق \left(x^{2}-x\right)^{2} نى يېيىڭ.
x^{4}-2x^{2}x+x^{2}+2x\left(x^{2}-1\right)=\left(x-1\right)^{2}\left(x+1\right)^{2}
مەلۇم ساننىڭ دەرىجىسىنى كۆتۈرۈش ئۈچۈن دەرىجە كۆرسەتكۈچىنى كۆپەيتىڭ. 2 بىلەن 2 نى كۆپەيتىپ، 4 نى تېپىڭ.
x^{4}-2x^{3}+x^{2}+2x\left(x^{2}-1\right)=\left(x-1\right)^{2}\left(x+1\right)^{2}
ئوخشاش ئاساسنىڭ دەرىجىسىنى كۆپەيتىش ئۈچۈن ئۇلارنىڭ دەرىجە كۆرسەتكۈچلىرىنى قوشۇڭ. 2 بىلەن 1 نى قوشۇپ، 3 نى چىقىرىڭ.
x^{4}-2x^{3}+x^{2}+2x^{3}-2x=\left(x-1\right)^{2}\left(x+1\right)^{2}
تارقىتىش قانۇنى بويىچە 2x نى x^{2}-1 گە كۆپەيتىڭ.
x^{4}+x^{2}-2x=\left(x-1\right)^{2}\left(x+1\right)^{2}
-2x^{3} بىلەن 2x^{3} نى بىرىكتۈرۈپ 0 نى چىقىرىڭ.
x^{4}+x^{2}-2x=\left(x^{2}-2x+1\right)\left(x+1\right)^{2}
ئىككى ئەزالىقلار تېيورېمىسى \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ئارقىلىق \left(x-1\right)^{2} نى يېيىڭ.
x^{4}+x^{2}-2x=\left(x^{2}-2x+1\right)\left(x^{2}+2x+1\right)
ئىككى ئەزالىقلار تېيورېمىسى \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ئارقىلىق \left(x+1\right)^{2} نى يېيىڭ.
x^{4}+x^{2}-2x=x^{4}-2x^{2}+1
تارقىتىش قانۇنى بويىچە x^{2}-2x+1 نى x^{2}+2x+1 گە كۆپەيتىپ، ئوخشاش ئەزالارنى بىرىكتۈرۈڭ.
x^{4}+x^{2}-2x-x^{4}=-2x^{2}+1
ھەر ئىككى تەرەپتىن x^{4} نى ئېلىڭ.
x^{2}-2x=-2x^{2}+1
x^{4} بىلەن -x^{4} نى بىرىكتۈرۈپ 0 نى چىقىرىڭ.
x^{2}-2x+2x^{2}=1
2x^{2} نى ھەر ئىككى تەرەپكە قوشۇڭ.
3x^{2}-2x=1
x^{2} بىلەن 2x^{2} نى بىرىكتۈرۈپ 3x^{2} نى چىقىرىڭ.
3x^{2}-2x-1=0
ھەر ئىككى تەرەپتىن 1 نى ئېلىڭ.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\left(-1\right)}}{2\times 3}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 3 نى a گە، -2 نى b گە ۋە -1 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 3\left(-1\right)}}{2\times 3}
-2 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-2\right)±\sqrt{4-12\left(-1\right)}}{2\times 3}
-4 نى 3 كە كۆپەيتىڭ.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2\times 3}
-12 نى -1 كە كۆپەيتىڭ.
x=\frac{-\left(-2\right)±\sqrt{16}}{2\times 3}
4 نى 12 گە قوشۇڭ.
x=\frac{-\left(-2\right)±4}{2\times 3}
16 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{2±4}{2\times 3}
-2 نىڭ قارشىسى 2 دۇر.
x=\frac{2±4}{6}
2 نى 3 كە كۆپەيتىڭ.
x=\frac{6}{6}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{2±4}{6} نى يېشىڭ. 2 نى 4 گە قوشۇڭ.
x=1
6 نى 6 كە بۆلۈڭ.
x=-\frac{2}{6}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{2±4}{6} نى يېشىڭ. 2 دىن 4 نى ئېلىڭ.
x=-\frac{1}{3}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-2}{6} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=1 x=-\frac{1}{3}
تەڭلىمە يېشىلدى.
\left(x^{2}\right)^{2}-2x^{2}x+x^{2}+2x\left(x^{2}-1\right)=\left(x-1\right)^{2}\left(x+1\right)^{2}
ئىككى ئەزالىقلار تېيورېمىسى \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ئارقىلىق \left(x^{2}-x\right)^{2} نى يېيىڭ.
x^{4}-2x^{2}x+x^{2}+2x\left(x^{2}-1\right)=\left(x-1\right)^{2}\left(x+1\right)^{2}
مەلۇم ساننىڭ دەرىجىسىنى كۆتۈرۈش ئۈچۈن دەرىجە كۆرسەتكۈچىنى كۆپەيتىڭ. 2 بىلەن 2 نى كۆپەيتىپ، 4 نى تېپىڭ.
x^{4}-2x^{3}+x^{2}+2x\left(x^{2}-1\right)=\left(x-1\right)^{2}\left(x+1\right)^{2}
ئوخشاش ئاساسنىڭ دەرىجىسىنى كۆپەيتىش ئۈچۈن ئۇلارنىڭ دەرىجە كۆرسەتكۈچلىرىنى قوشۇڭ. 2 بىلەن 1 نى قوشۇپ، 3 نى چىقىرىڭ.
x^{4}-2x^{3}+x^{2}+2x^{3}-2x=\left(x-1\right)^{2}\left(x+1\right)^{2}
تارقىتىش قانۇنى بويىچە 2x نى x^{2}-1 گە كۆپەيتىڭ.
x^{4}+x^{2}-2x=\left(x-1\right)^{2}\left(x+1\right)^{2}
-2x^{3} بىلەن 2x^{3} نى بىرىكتۈرۈپ 0 نى چىقىرىڭ.
x^{4}+x^{2}-2x=\left(x^{2}-2x+1\right)\left(x+1\right)^{2}
ئىككى ئەزالىقلار تېيورېمىسى \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ئارقىلىق \left(x-1\right)^{2} نى يېيىڭ.
x^{4}+x^{2}-2x=\left(x^{2}-2x+1\right)\left(x^{2}+2x+1\right)
ئىككى ئەزالىقلار تېيورېمىسى \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ئارقىلىق \left(x+1\right)^{2} نى يېيىڭ.
x^{4}+x^{2}-2x=x^{4}-2x^{2}+1
تارقىتىش قانۇنى بويىچە x^{2}-2x+1 نى x^{2}+2x+1 گە كۆپەيتىپ، ئوخشاش ئەزالارنى بىرىكتۈرۈڭ.
x^{4}+x^{2}-2x-x^{4}=-2x^{2}+1
ھەر ئىككى تەرەپتىن x^{4} نى ئېلىڭ.
x^{2}-2x=-2x^{2}+1
x^{4} بىلەن -x^{4} نى بىرىكتۈرۈپ 0 نى چىقىرىڭ.
x^{2}-2x+2x^{2}=1
2x^{2} نى ھەر ئىككى تەرەپكە قوشۇڭ.
3x^{2}-2x=1
x^{2} بىلەن 2x^{2} نى بىرىكتۈرۈپ 3x^{2} نى چىقىرىڭ.
\frac{3x^{2}-2x}{3}=\frac{1}{3}
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x^{2}-\frac{2}{3}x=\frac{1}{3}
3 گە بۆلگەندە 3 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=\frac{1}{3}+\left(-\frac{1}{3}\right)^{2}
-\frac{2}{3}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{1}{3} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{1}{3} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{1}{3} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{4}{9}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{1}{3} نى \frac{1}{9} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9}
كۆپەيتكۈچى x^{2}-\frac{2}{3}x+\frac{1}{9}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{1}{3}=\frac{2}{3} x-\frac{1}{3}=-\frac{2}{3}
ئاددىيلاشتۇرۇڭ.
x=1 x=-\frac{1}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{3} نى قوشۇڭ.