ئاساسىي مەزمۇنغا ئاتلاش
ھېسابلاش
Tick mark Image
كۆپەيتكۈچى
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\left(x^{2}+\frac{2x\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{1}{3}\right)\left(x^{2}-\frac{2x}{\sqrt{3}}+\frac{1}{3}\right)
\frac{2x}{\sqrt{3}} نىڭ سۈرەت ۋە مەخرەجلىرىنى \sqrt{3} گە كۆپەيتىپ، مەخرەجنى راتسىيوناللاشتۇرۇڭ.
\left(x^{2}+\frac{2x\sqrt{3}}{3}+\frac{1}{3}\right)\left(x^{2}-\frac{2x}{\sqrt{3}}+\frac{1}{3}\right)
\sqrt{3} نىڭ كىۋادرات يىلتىزى 3.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)\left(x^{2}-\frac{2x}{\sqrt{3}}+\frac{1}{3}\right)
\frac{2x\sqrt{3}}{3} بىلەن \frac{1}{3} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى قوشۇش ئارقىلىق قوشسىڭىز بولىدۇ.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)\left(x^{2}-\frac{2x\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{1}{3}\right)
\frac{2x}{\sqrt{3}} نىڭ سۈرەت ۋە مەخرەجلىرىنى \sqrt{3} گە كۆپەيتىپ، مەخرەجنى راتسىيوناللاشتۇرۇڭ.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)\left(x^{2}-\frac{2x\sqrt{3}}{3}+\frac{1}{3}\right)
\sqrt{3} نىڭ كىۋادرات يىلتىزى 3.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)
\frac{2x\sqrt{3}}{3} بىلەن \frac{1}{3} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى قوشۇش ئارقىلىق قوشسىڭىز بولىدۇ.
\left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)^{2}
x^{2}+\frac{2x\sqrt{3}+1}{3} گە x^{2}+\frac{2x\sqrt{3}+1}{3} نى كۆپەيتىپ \left(x^{2}+\frac{2x\sqrt{3}+1}{3}\right)^{2} نى چىقىرىڭ.
\left(\frac{3x^{2}}{3}+\frac{2x\sqrt{3}+1}{3}\right)^{2}
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. x^{2} نى \frac{3}{3} كە كۆپەيتىڭ.
\left(\frac{3x^{2}+2x\sqrt{3}+1}{3}\right)^{2}
\frac{3x^{2}}{3} بىلەن \frac{2x\sqrt{3}+1}{3} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى قوشۇش ئارقىلىق قوشسىڭىز بولىدۇ.
\frac{\left(3x^{2}+2x\sqrt{3}+1\right)^{2}}{3^{2}}
\frac{3x^{2}+2x\sqrt{3}+1}{3} نىڭ دەرىجىسىنى ئۆستۈرۈش ئۈچۈن سۈرەت ۋە مەخرەجنىڭ ھەر ئىككىسىنى ئۆستۈرۈپ، ئاندىن بۆلۈڭ.
\frac{9x^{4}+12\sqrt{3}x^{3}+4\left(\sqrt{3}\right)^{2}x^{2}+6x^{2}+4\sqrt{3}x+1}{3^{2}}
3x^{2}+2x\sqrt{3}+1 نىڭ كىۋادراتىنى تېپىڭ.
\frac{9x^{4}+12\sqrt{3}x^{3}+4\times 3x^{2}+6x^{2}+4\sqrt{3}x+1}{3^{2}}
\sqrt{3} نىڭ كىۋادرات يىلتىزى 3.
\frac{9x^{4}+12\sqrt{3}x^{3}+12x^{2}+6x^{2}+4\sqrt{3}x+1}{3^{2}}
4 گە 3 نى كۆپەيتىپ 12 نى چىقىرىڭ.
\frac{9x^{4}+12\sqrt{3}x^{3}+18x^{2}+4\sqrt{3}x+1}{3^{2}}
12x^{2} بىلەن 6x^{2} نى بىرىكتۈرۈپ 18x^{2} نى چىقىرىڭ.
\frac{9x^{4}+12\sqrt{3}x^{3}+18x^{2}+4\sqrt{3}x+1}{9}
3 نىڭ 2-دەرىجىسىنى ھېسابلاپ 9 نى چىقىرىڭ.