x نى يېشىش
x=-2
x=-10
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
x^{2}+12x+36-16=0
ئىككى ئەزالىقلار تېيورېمىسى \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ئارقىلىق \left(x+6\right)^{2} نى يېيىڭ.
x^{2}+12x+20=0
36 دىن 16 نى ئېلىپ 20 نى چىقىرىڭ.
a+b=12 ab=20
تەڭلىمىنى يېشىش ئۈچۈن x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) دېگەن فورمۇلا ئارقىلىق x^{2}+12x+20 نى ھېسابلاڭ. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,20 2,10 4,5
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مۇسبەت، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مۇسبەت. ھاسىلات 20 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1+20=21 2+10=12 4+5=9
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=2 b=10
12 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x+2\right)\left(x+10\right)
كۆپەيتكەن \left(x+a\right)\left(x+b\right) دېگەن ئىپادىنى تاپقان قىممەت ئارقىلىق قايتا يېزىڭ.
x=-2 x=-10
تەڭلىمىنى يېشىش ئۈچۈن x+2=0 بىلەن x+10=0 نى يېشىڭ.
x^{2}+12x+36-16=0
ئىككى ئەزالىقلار تېيورېمىسى \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ئارقىلىق \left(x+6\right)^{2} نى يېيىڭ.
x^{2}+12x+20=0
36 دىن 16 نى ئېلىپ 20 نى چىقىرىڭ.
a+b=12 ab=1\times 20=20
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى x^{2}+ax+bx+20 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,20 2,10 4,5
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مۇسبەت، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مۇسبەت. ھاسىلات 20 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1+20=21 2+10=12 4+5=9
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=2 b=10
12 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x^{2}+2x\right)+\left(10x+20\right)
x^{2}+12x+20 نى \left(x^{2}+2x\right)+\left(10x+20\right) شەكلىدە قايتا يېزىڭ.
x\left(x+2\right)+10\left(x+2\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 10 نى چىقىرىڭ.
\left(x+2\right)\left(x+10\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x+2 نى چىقىرىڭ.
x=-2 x=-10
تەڭلىمىنى يېشىش ئۈچۈن x+2=0 بىلەن x+10=0 نى يېشىڭ.
x^{2}+12x+36-16=0
ئىككى ئەزالىقلار تېيورېمىسى \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ئارقىلىق \left(x+6\right)^{2} نى يېيىڭ.
x^{2}+12x+20=0
36 دىن 16 نى ئېلىپ 20 نى چىقىرىڭ.
x=\frac{-12±\sqrt{12^{2}-4\times 20}}{2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 1 نى a گە، 12 نى b گە ۋە 20 نى c گە ئالماشتۇرۇڭ.
x=\frac{-12±\sqrt{144-4\times 20}}{2}
12 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-12±\sqrt{144-80}}{2}
-4 نى 20 كە كۆپەيتىڭ.
x=\frac{-12±\sqrt{64}}{2}
144 نى -80 گە قوشۇڭ.
x=\frac{-12±8}{2}
64 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=-\frac{4}{2}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-12±8}{2} نى يېشىڭ. -12 نى 8 گە قوشۇڭ.
x=-2
-4 نى 2 كە بۆلۈڭ.
x=-\frac{20}{2}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-12±8}{2} نى يېشىڭ. -12 دىن 8 نى ئېلىڭ.
x=-10
-20 نى 2 كە بۆلۈڭ.
x=-2 x=-10
تەڭلىمە يېشىلدى.
x^{2}+12x+36-16=0
ئىككى ئەزالىقلار تېيورېمىسى \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ئارقىلىق \left(x+6\right)^{2} نى يېيىڭ.
x^{2}+12x+20=0
36 دىن 16 نى ئېلىپ 20 نى چىقىرىڭ.
x^{2}+12x=-20
ھەر ئىككى تەرەپتىن 20 نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
x^{2}+12x+6^{2}=-20+6^{2}
12، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، 6 نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 6 نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+12x+36=-20+36
6 نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+12x+36=16
-20 نى 36 گە قوشۇڭ.
\left(x+6\right)^{2}=16
كۆپەيتكۈچى x^{2}+12x+36. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+6\right)^{2}}=\sqrt{16}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+6=4 x+6=-4
ئاددىيلاشتۇرۇڭ.
x=-2 x=-10
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 6 نى ئېلىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}