x نى يېشىش
x<23
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
x^{2}-x-2>\left(x-5\right)\left(x+5\right)
تارقىتىش قانۇنى بويىچە x+1 نى x-2 گە كۆپەيتىپ، ئوخشاش ئەزالارنى بىرىكتۈرۈڭ.
x^{2}-x-2>x^{2}-25
\left(x-5\right)\left(x+5\right) نى ئويلىشىپ كۆرۈڭ. كۆپەيتىشنى تۆۋەندىكى قائىدە ئارقىلىق كىۋادرات ئايرىمىغا ئايلاندۇرۇشقا بولىدۇ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 5 نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-x-2-x^{2}>-25
ھەر ئىككى تەرەپتىن x^{2} نى ئېلىڭ.
-x-2>-25
x^{2} بىلەن -x^{2} نى بىرىكتۈرۈپ 0 نى چىقىرىڭ.
-x>-25+2
2 نى ھەر ئىككى تەرەپكە قوشۇڭ.
-x>-23
-25 گە 2 نى قوشۇپ -23 نى چىقىرىڭ.
x<\frac{-23}{-1}
ھەر ئىككى تەرەپنى -1 گە بۆلۈڭ. -1 مەنپىي بولغاچقا، تەڭسىزلىكنىڭ يۆنىلىشى ئۆزگەرتىلدى.
x<23
\frac{-23}{-1} دېگەن كەسىرنى سۈرەت ۋە مەخرەجدىكى مىنۇس بەلگىسىنى يوقىتىش ئارقىلىق 23 شەكلىدە يېزىشقا بولىدۇ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}