( m ^ { 5 } + 3 y ) d x - n d y = 0
d نى يېشىش
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&\left(n=0\text{ and }x=0\right)\text{ or }\left(y=0\text{ and }x=0\right)\text{ or }\left(m=\frac{\sqrt[5]{y\left(n-3x\right)}}{\sqrt[5]{x}}\text{ and }x\neq 0\right)\end{matrix}\right.
m نى يېشىش
\left\{\begin{matrix}m=\sqrt[5]{\frac{y\left(n-3x\right)}{x}}\text{, }&x\neq 0\\m\in \mathrm{R}\text{, }&d=0\text{ or }\left(n=0\text{ and }x=0\right)\text{ or }\left(y=0\text{ and }x=0\right)\end{matrix}\right.
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\left(m^{5}d+3yd\right)x-ndy=0
تارقىتىش قانۇنى بويىچە m^{5}+3y نى d گە كۆپەيتىڭ.
m^{5}dx+3ydx-ndy=0
تارقىتىش قانۇنى بويىچە m^{5}d+3yd نى x گە كۆپەيتىڭ.
3dxy+dxm^{5}-dny=0
ئەزالارنى قايتا رەتلەڭ.
\left(3xy+xm^{5}-ny\right)d=0
d نى ئۆز ئىچىگە ئالغان بارلىق ئەزالارنى بىرىكتۈرۈڭ.
d=0
0 نى 3xy+xm^{5}-ny كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}