k نى يېشىش (complex solution)
\left\{\begin{matrix}k=-\frac{-x+y-2}{x+2y-1}\text{, }&x\neq 1-2y\\k\in \mathrm{C}\text{, }&x=-1\text{ and }y=1\end{matrix}\right.
x نى يېشىش (complex solution)
\left\{\begin{matrix}x=-\frac{2ky+y-k-2}{k-1}\text{, }&k\neq 1\\x\in \mathrm{C}\text{, }&y=1\text{ and }k=1\end{matrix}\right.
k نى يېشىش
\left\{\begin{matrix}k=-\frac{-x+y-2}{x+2y-1}\text{, }&x\neq 1-2y\\k\in \mathrm{R}\text{, }&x=-1\text{ and }y=1\end{matrix}\right.
x نى يېشىش
\left\{\begin{matrix}x=-\frac{2ky+y-k-2}{k-1}\text{, }&k\neq 1\\x\in \mathrm{R}\text{, }&y=1\text{ and }k=1\end{matrix}\right.
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
kx-x+\left(2k+1\right)y-2-k=0
تارقىتىش قانۇنى بويىچە k-1 نى x گە كۆپەيتىڭ.
kx-x+2ky+y-2-k=0
تارقىتىش قانۇنى بويىچە 2k+1 نى y گە كۆپەيتىڭ.
kx+2ky+y-2-k=x
x نى ھەر ئىككى تەرەپكە قوشۇڭ. ھەرقانداق سانغا نۆل قوشۇلسا نەتىجە شۇ ساننىڭ ئۆزىدۇر.
kx+2ky-2-k=x-y
ھەر ئىككى تەرەپتىن y نى ئېلىڭ.
kx+2ky-k=x-y+2
2 نى ھەر ئىككى تەرەپكە قوشۇڭ.
\left(x+2y-1\right)k=x-y+2
k نى ئۆز ئىچىگە ئالغان بارلىق ئەزالارنى بىرىكتۈرۈڭ.
\frac{\left(x+2y-1\right)k}{x+2y-1}=\frac{x-y+2}{x+2y-1}
ھەر ئىككى تەرەپنى x+2y-1 گە بۆلۈڭ.
k=\frac{x-y+2}{x+2y-1}
x+2y-1 گە بۆلگەندە x+2y-1 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
kx-x+\left(2k+1\right)y-2-k=0
تارقىتىش قانۇنى بويىچە k-1 نى x گە كۆپەيتىڭ.
kx-x+2ky+y-2-k=0
تارقىتىش قانۇنى بويىچە 2k+1 نى y گە كۆپەيتىڭ.
kx-x+y-2-k=-2ky
ھەر ئىككى تەرەپتىن 2ky نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
kx-x-2-k=-2ky-y
ھەر ئىككى تەرەپتىن y نى ئېلىڭ.
kx-x-k=-2ky-y+2
2 نى ھەر ئىككى تەرەپكە قوشۇڭ.
kx-x=-2ky-y+2+k
k نى ھەر ئىككى تەرەپكە قوشۇڭ.
\left(k-1\right)x=-2ky-y+2+k
x نى ئۆز ئىچىگە ئالغان بارلىق ئەزالارنى بىرىكتۈرۈڭ.
\left(k-1\right)x=2+k-y-2ky
تەڭلىمە ئۆلچەملىك بولدى.
\frac{\left(k-1\right)x}{k-1}=\frac{2+k-y-2ky}{k-1}
ھەر ئىككى تەرەپنى k-1 گە بۆلۈڭ.
x=\frac{2+k-y-2ky}{k-1}
k-1 گە بۆلگەندە k-1 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
kx-x+\left(2k+1\right)y-2-k=0
تارقىتىش قانۇنى بويىچە k-1 نى x گە كۆپەيتىڭ.
kx-x+2ky+y-2-k=0
تارقىتىش قانۇنى بويىچە 2k+1 نى y گە كۆپەيتىڭ.
kx+2ky+y-2-k=x
x نى ھەر ئىككى تەرەپكە قوشۇڭ. ھەرقانداق سانغا نۆل قوشۇلسا نەتىجە شۇ ساننىڭ ئۆزىدۇر.
kx+2ky-2-k=x-y
ھەر ئىككى تەرەپتىن y نى ئېلىڭ.
kx+2ky-k=x-y+2
2 نى ھەر ئىككى تەرەپكە قوشۇڭ.
\left(x+2y-1\right)k=x-y+2
k نى ئۆز ئىچىگە ئالغان بارلىق ئەزالارنى بىرىكتۈرۈڭ.
\frac{\left(x+2y-1\right)k}{x+2y-1}=\frac{x-y+2}{x+2y-1}
ھەر ئىككى تەرەپنى x+2y-1 گە بۆلۈڭ.
k=\frac{x-y+2}{x+2y-1}
x+2y-1 گە بۆلگەندە x+2y-1 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
kx-x+\left(2k+1\right)y-2-k=0
تارقىتىش قانۇنى بويىچە k-1 نى x گە كۆپەيتىڭ.
kx-x+2ky+y-2-k=0
تارقىتىش قانۇنى بويىچە 2k+1 نى y گە كۆپەيتىڭ.
kx-x+y-2-k=-2ky
ھەر ئىككى تەرەپتىن 2ky نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
kx-x-2-k=-2ky-y
ھەر ئىككى تەرەپتىن y نى ئېلىڭ.
kx-x-k=-2ky-y+2
2 نى ھەر ئىككى تەرەپكە قوشۇڭ.
kx-x=-2ky-y+2+k
k نى ھەر ئىككى تەرەپكە قوشۇڭ.
\left(k-1\right)x=-2ky-y+2+k
x نى ئۆز ئىچىگە ئالغان بارلىق ئەزالارنى بىرىكتۈرۈڭ.
\left(k-1\right)x=2+k-y-2ky
تەڭلىمە ئۆلچەملىك بولدى.
\frac{\left(k-1\right)x}{k-1}=\frac{2+k-y-2ky}{k-1}
ھەر ئىككى تەرەپنى k-1 گە بۆلۈڭ.
x=\frac{2+k-y-2ky}{k-1}
k-1 گە بۆلگەندە k-1 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}