ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

3x^{2}+x-10\leq x^{2}
تارقىتىش قانۇنى بويىچە 3x-5 نى x+2 گە كۆپەيتىپ، ئوخشاش ئەزالارنى بىرىكتۈرۈڭ.
3x^{2}+x-10-x^{2}\leq 0
ھەر ئىككى تەرەپتىن x^{2} نى ئېلىڭ.
2x^{2}+x-10\leq 0
3x^{2} بىلەن -x^{2} نى بىرىكتۈرۈپ 2x^{2} نى چىقىرىڭ.
2x^{2}+x-10=0
تەڭسىزلىكنى يېشىش ئۈچۈن سول تەرەپنى كۆپەيتىڭ. x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-10\right)}}{2\times 2}
ax^{2}+bx+c=0 شەكلىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادراتلىق فورمۇلا ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتلىق فورمۇلادىكى 2 نى a گە، 1 نى b گە ۋە -10 نى c گە ئالماشتۇرۇڭ.
x=\frac{-1±9}{4}
ھېسابلاڭ.
x=2 x=-\frac{5}{2}
x=\frac{-1±9}{4} دېگەن تەڭلىمىنى ± پىلۇس ۋە ± مىنۇس بولغان ئەھۋاللار ئۈچۈن يېشىڭ.
2\left(x-2\right)\left(x+\frac{5}{2}\right)\leq 0
ئېرىشكەن يېشىش ئۇسۇلى ئارقىلىق تەڭسىزلىكنى قايتا يېزىڭ.
x-2\geq 0 x+\frac{5}{2}\leq 0
ھاسىلاتنىڭ ≤0 بولۇشى ئۈچۈن x-2 ۋە x+\frac{5}{2} دىن بىرى ≥0 ۋە يەنە بىرى ≤0 بولۇشى كېرەك. x-2\geq 0 ۋە x+\frac{5}{2}\leq 0 بولغان چاغدىكى ئەھۋالنى ئويلىشىڭ.
x\in \emptyset
بۇ ھەرقانداق x ئۈچۈن خاتا.
x+\frac{5}{2}\geq 0 x-2\leq 0
x-2\leq 0 ۋە x+\frac{5}{2}\geq 0 بولغان چاغدىكى ئەھۋالنى ئويلىشىڭ.
x\in \begin{bmatrix}-\frac{5}{2},2\end{bmatrix}
ھەر ئىككى تەڭسىزلىكنى قانائەتلەندۈرىدىغان يېشىم x\in \left[-\frac{5}{2},2\right] دۇر.
x\in \begin{bmatrix}-\frac{5}{2},2\end{bmatrix}
ئاخىرقى يېشىم ئېرىشكەن يېشىملەرنىڭ بىرىكمىسىدۇر.