( 3 x ^ { 2 } y + e ^ { y } ) d x + ( x ^ { 3 } + x e ^ { y } - 2 y ) d y = 0
d نى يېشىش
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&xye^{y}+xe^{y}-2y^{2}+4yx^{3}=0\end{matrix}\right.
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\left(3x^{2}yd+e^{y}d\right)x+\left(x^{3}+xe^{y}-2y\right)dy=0
تارقىتىش قانۇنى بويىچە 3x^{2}y+e^{y} نى d گە كۆپەيتىڭ.
3ydx^{3}+e^{y}dx+\left(x^{3}+xe^{y}-2y\right)dy=0
تارقىتىش قانۇنى بويىچە 3x^{2}yd+e^{y}d نى x گە كۆپەيتىڭ.
3ydx^{3}+e^{y}dx+\left(x^{3}d+xe^{y}d-2yd\right)y=0
تارقىتىش قانۇنى بويىچە x^{3}+xe^{y}-2y نى d گە كۆپەيتىڭ.
3ydx^{3}+e^{y}dx+x^{3}dy+xe^{y}dy-2dy^{2}=0
تارقىتىش قانۇنى بويىچە x^{3}d+xe^{y}d-2yd نى y گە كۆپەيتىڭ.
4ydx^{3}+e^{y}dx+xe^{y}dy-2dy^{2}=0
3ydx^{3} بىلەن x^{3}dy نى بىرىكتۈرۈپ 4ydx^{3} نى چىقىرىڭ.
\left(4yx^{3}+e^{y}x+xe^{y}y-2y^{2}\right)d=0
d نى ئۆز ئىچىگە ئالغان بارلىق ئەزالارنى بىرىكتۈرۈڭ.
\left(xye^{y}+xe^{y}-2y^{2}+4yx^{3}\right)d=0
تەڭلىمە ئۆلچەملىك بولدى.
d=0
0 نى 4x^{3}y+e^{y}x+xe^{y}y-2y^{2} كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}