ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\left(x+1\right)\left(x+3\right)\left(x-2\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
نۆلگە بۆلۈش بەلگىلەنمىگەچكە ئۆزگەرگۈچى مىقدار x قىممەت -3,-1 نىڭ ھېچقايسىسىغا تەڭ ئەمەس. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى x+3,4\left(x^{2}+4x+3\right) نىڭ ئەڭ كىچىك ئومۇمىي بۆلگۈچىسى 4\left(x+1\right)\left(x+3\right) گە كۆپەيتىڭ.
\left(x^{2}+4x+3\right)\left(x-2\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
تارقىتىش قانۇنى بويىچە x+1 نى x+3 گە كۆپەيتىپ، ئوخشاش ئەزالارنى بىرىكتۈرۈڭ.
\left(x^{3}+2x^{2}-5x-6\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
تارقىتىش قانۇنى بويىچە x^{2}+4x+3 نى x-2 گە كۆپەيتىپ، ئوخشاش ئەزالارنى بىرىكتۈرۈڭ.
\left(x^{3}+2x^{2}-5x-6\right)\left(3+\frac{7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
x^{2}-x-2 نى ئاجرىتىڭ.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. 3 نى \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} كە كۆپەيتىڭ.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3\left(x-2\right)\left(x+1\right)+7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
\frac{3\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} بىلەن \frac{7x-5}{\left(x-2\right)\left(x+1\right)} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى قوشۇش ئارقىلىق قوشسىڭىز بولىدۇ.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+3x-6x-6+7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
3\left(x-2\right)\left(x+1\right)+7x-5 دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
3x^{2}+3x-6x-6+7x-5 دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)}-\frac{3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. \left(x-2\right)\left(x+1\right) بىلەن x+1 نىڭ ئەڭ كىچىك ئومۇمىي ھەسسىلىكى \left(x-2\right)\left(x+1\right) دۇر. \frac{3x}{x+1} نى \frac{x-2}{x-2} كە كۆپەيتىڭ.
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{3x^{2}+4x-11-3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
\frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)} بىلەن \frac{3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى ئېلىش ئارقىلىق ئالسىڭىز بولىدۇ.
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{3x^{2}+4x-11-3x^{2}+6x}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
3x^{2}+4x-11-3x\left(x-2\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{10x-11}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
3x^{2}+4x-11-3x^{2}+6x دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{10x-11}{\left(x-2\right)\left(x+1\right)} نى يەككە ئاددىي كەسىر شەكلىدە ئىپادىلەڭ.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+20x+20=9x^{2}+43x+8
تارقىتىش قانۇنى بويىچە 4x+4 نى 5 گە كۆپەيتىڭ.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+\frac{\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. 20x+20 نى \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} كە كۆپەيتىڭ.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)+\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)} بىلەن \frac{\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى قوشۇش ئارقىلىق قوشسىڭىز بولىدۇ.
\frac{10x^{4}-11x^{3}+20x^{3}-22x^{2}-50x^{2}+55x-60x+66+20x^{3}-20x^{2}-40x+20x^{2}-20x-40}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)+\left(20x+20\right)\left(x-2\right)\left(x+1\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
10x^{4}-11x^{3}+20x^{3}-22x^{2}-50x^{2}+55x-60x+66+20x^{3}-20x^{2}-40x+20x^{2}-20x-40 دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{x^{2}-x-2}=9x^{2}+43x+8
تارقىتىش قانۇنى بويىچە x-2 نى x+1 گە كۆپەيتىپ، ئوخشاش ئەزالارنى بىرىكتۈرۈڭ.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{x^{2}-x-2}-9x^{2}=43x+8
ھەر ئىككى تەرەپتىن 9x^{2} نى ئېلىڭ.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-9x^{2}=43x+8
x^{2}-x-2 نى ئاجرىتىڭ.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}+\frac{-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=43x+8
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. -9x^{2} نى \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} كە كۆپەيتىڭ.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=43x+8
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)} بىلەن \frac{-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى قوشۇش ئارقىلىق قوشسىڭىز بولىدۇ.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{4}-9x^{3}+18x^{3}+18x^{2}}{\left(x-2\right)\left(x+1\right)}=43x+8
10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{2}\left(x-2\right)\left(x+1\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}=43x+8
10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{4}-9x^{3}+18x^{3}+18x^{2} دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-43x=8
ھەر ئىككى تەرەپتىن 43x نى ئېلىڭ.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{x^{2}-x-2}-43x=8
تارقىتىش قانۇنى بويىچە x-2 نى x+1 گە كۆپەيتىپ، ئوخشاش ئەزالارنى بىرىكتۈرۈڭ.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-43x=8
x^{2}-x-2 نى ئاجرىتىڭ.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}+\frac{-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=8
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. -43x نى \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} كە كۆپەيتىڭ.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=8
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)} بىلەن \frac{-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى قوشۇش ئارقىلىق قوشسىڭىز بولىدۇ.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26-43x^{3}-43x^{2}+86x^{2}+86x}{\left(x-2\right)\left(x+1\right)}=8
x^{4}+38x^{3}-54x^{2}-65x+26-43x\left(x-2\right)\left(x+1\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}=8
x^{4}+38x^{3}-54x^{2}-65x+26-43x^{3}-43x^{2}+86x^{2}+86x دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-8=0
ھەر ئىككى تەرەپتىن 8 نى ئېلىڭ.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{x^{2}-x-2}-8=0
تارقىتىش قانۇنى بويىچە x-2 نى x+1 گە كۆپەيتىپ، ئوخشاش ئەزالارنى بىرىكتۈرۈڭ.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-8=0
x^{2}-x-2 نى ئاجرىتىڭ.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-\frac{8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=0
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. 8 نى \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} كە كۆپەيتىڭ.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26-8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=0
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)} بىلەن \frac{8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى ئېلىش ئارقىلىق ئالسىڭىز بولىدۇ.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26-8x^{2}-8x+16x+16}{\left(x-2\right)\left(x+1\right)}=0
x^{4}-5x^{3}-11x^{2}+21x+26-8\left(x-2\right)\left(x+1\right) دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{x^{4}-5x^{3}-19x^{2}+29x+42}{\left(x-2\right)\left(x+1\right)}=0
x^{4}-5x^{3}-11x^{2}+21x+26-8x^{2}-8x+16x+16 دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
x^{4}-5x^{3}-19x^{2}+29x+42=0
نۆلگە بۆلۈش بەلگىلەنمىگەچكە ئۆزگەرگۈچى مىقدار x قىممەت -1,2 نىڭ ھېچقايسىسىغا تەڭ ئەمەس. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \left(x-2\right)\left(x+1\right) گە كۆپەيتىڭ.
±42,±21,±14,±7,±6,±3,±2,±1
راتسىيونال يىلتىز تېيورمىسى بويىچە بارلىق كۆپ ئەزالىقنىڭ راتسىيونال يىلتىزى \frac{p}{q} دېگەن شەكىلدە بولىدۇ، p تۇراقلىق ئەزا 42 نى بۆلىدۇ، q باش كوئېففىتسېنت 1 نى بۆلىدۇ. بارلىق نامزات \frac{p}{q} نى تىزىڭ.
x=-1
بارلىق پۈتۈن سانلىق قىممەتنى كىچىكتىن باشلاپ مۇتلەق قىممەت بويىچە سىناپ ئوخشاش يىلتىز تېپىڭ. پۈتۈن يىلتىز تېپىلمىسا، كەسىرنى سىناپ بېقىڭ.
x^{3}-6x^{2}-13x+42=0
كۆپەيتىش تېيورمىسى بويىچە، x-k ھەر بىر يىلتىز k نىڭ كۆپ ئەزالىق كۆپەيتكۈچىسىدۇر. x^{4}-5x^{3}-19x^{2}+29x+42 نى x+1 گە بۆلۈپ x^{3}-6x^{2}-13x+42 نى چىقىرىڭ. تەڭلىمىنى نەتىجە 0 گە تەڭ شەكىلدە يېشىڭ.
±42,±21,±14,±7,±6,±3,±2,±1
راتسىيونال يىلتىز تېيورمىسى بويىچە بارلىق كۆپ ئەزالىقنىڭ راتسىيونال يىلتىزى \frac{p}{q} دېگەن شەكىلدە بولىدۇ، p تۇراقلىق ئەزا 42 نى بۆلىدۇ، q باش كوئېففىتسېنت 1 نى بۆلىدۇ. بارلىق نامزات \frac{p}{q} نى تىزىڭ.
x=2
بارلىق پۈتۈن سانلىق قىممەتنى كىچىكتىن باشلاپ مۇتلەق قىممەت بويىچە سىناپ ئوخشاش يىلتىز تېپىڭ. پۈتۈن يىلتىز تېپىلمىسا، كەسىرنى سىناپ بېقىڭ.
x^{2}-4x-21=0
كۆپەيتىش تېيورمىسى بويىچە، x-k ھەر بىر يىلتىز k نىڭ كۆپ ئەزالىق كۆپەيتكۈچىسىدۇر. x^{3}-6x^{2}-13x+42 نى x-2 گە بۆلۈپ x^{2}-4x-21 نى چىقىرىڭ. تەڭلىمىنى نەتىجە 0 گە تەڭ شەكىلدە يېشىڭ.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\left(-21\right)}}{2}
ax^{2}+bx+c=0 شەكلىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادراتلىق فورمۇلا ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتلىق فورمۇلادىكى 1 نى a گە، -4 نى b گە ۋە -21 نى c گە ئالماشتۇرۇڭ.
x=\frac{4±10}{2}
ھېسابلاڭ.
x=-3 x=7
x^{2}-4x-21=0 دېگەن تەڭلىمىنى ± پىلۇس ۋە ± مىنۇس بولغان ئەھۋاللار ئۈچۈن يېشىڭ.
x=7
ئۆزگەرگۈچى مىقدار تەڭ بولمايدىغان قىممەتلەرنى چىقىرىۋېتىڭ.
x=-1 x=2 x=-3 x=7
بارلىق يېشىمنى تىزىڭ.
x=7
ئۆزگەرگۈچى مىقدار x قىممەت -1,2,-3 نىڭ ھېچقايسىسىغا تەڭ ئەمەس.