ئاساسىي مەزمۇنغا ئاتلاش
ھېسابلاش
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

4\left(\sqrt{2}\right)^{2}-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
ئىككى ئەزالىقلار تېيورېمىسى \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ئارقىلىق \left(2\sqrt{2}-1\right)^{2} نى يېيىڭ.
4\times 2-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
\sqrt{2} نىڭ كىۋادرات يىلتىزى 2.
8-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
4 گە 2 نى كۆپەيتىپ 8 نى چىقىرىڭ.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
8 گە 1 نى قوشۇپ 9 نى چىقىرىڭ.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{2\sqrt{3}-3}{\sqrt{3}}
12=2^{2}\times 3 نى ئاجرىتىڭ. ھاسىلات \sqrt{2^{2}\times 3} نىڭ كىۋادرات يىلتىزىنى كىۋادرات يىلتىز \sqrt{2^{2}}\sqrt{3} نىڭ ھاسىلاتى شەكلىدە قايتا يېزىڭ. 2^{2} نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
\frac{2\sqrt{3}-3}{\sqrt{3}} نىڭ سۈرەت ۋە مەخرەجلىرىنى \sqrt{3} گە كۆپەيتىپ، مەخرەجنى راتسىيوناللاشتۇرۇڭ.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3}
\sqrt{3} نىڭ كىۋادرات يىلتىزى 3.
\frac{3\left(9-4\sqrt{2}\right)}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3}
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. 9-4\sqrt{2} نى \frac{3}{3} كە كۆپەيتىڭ.
\frac{3\left(9-4\sqrt{2}\right)+\left(2\sqrt{3}-3\right)\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
\frac{3\left(9-4\sqrt{2}\right)}{3} بىلەن \frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى قوشۇش ئارقىلىق قوشسىڭىز بولىدۇ.
\frac{27-12\sqrt{2}+6-3\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
3\left(9-4\sqrt{2}\right)+\left(2\sqrt{3}-3\right)\sqrt{3} دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
\frac{33-12\sqrt{2}-3\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
27-12\sqrt{2}+6-3\sqrt{3} دە ھېسابلاڭ.
11-4\sqrt{2}-\sqrt{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
11-4\sqrt{2}-\sqrt{3} نى تېپىش ئۈچۈن 33-12\sqrt{2}-3\sqrt{3} نىڭ ھەر بىر ئەزاسىنى 3 گە بۆلۈڭ.
11-4\sqrt{2}-\sqrt{3}-4\left(\sqrt{3}\right)^{2}+1
تارقىتىش قانۇنى بويىچە 2\sqrt{3}-1 نى -2\sqrt{3}-1 گە كۆپەيتىپ، ئوخشاش ئەزالارنى بىرىكتۈرۈڭ.
11-4\sqrt{2}-\sqrt{3}-4\times 3+1
\sqrt{3} نىڭ كىۋادرات يىلتىزى 3.
11-4\sqrt{2}-\sqrt{3}-12+1
-4 گە 3 نى كۆپەيتىپ -12 نى چىقىرىڭ.
11-4\sqrt{2}-\sqrt{3}-11
-12 گە 1 نى قوشۇپ -11 نى چىقىرىڭ.
-4\sqrt{2}-\sqrt{3}
11 دىن 11 نى ئېلىپ 0 نى چىقىرىڭ.