ھېسابلاش
10
كۆپەيتكۈچى
2\times 5
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
1-2\sqrt{3}+\left(\sqrt{3}\right)^{2}+2\left(3+\sqrt{3}\right)
ئىككى ئەزالىقلار تېيورېمىسى \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ئارقىلىق \left(1-\sqrt{3}\right)^{2} نى يېيىڭ.
1-2\sqrt{3}+3+2\left(3+\sqrt{3}\right)
\sqrt{3} نىڭ كىۋادرات يىلتىزى 3.
4-2\sqrt{3}+2\left(3+\sqrt{3}\right)
1 گە 3 نى قوشۇپ 4 نى چىقىرىڭ.
4-2\sqrt{3}+6+2\sqrt{3}
تارقىتىش قانۇنى بويىچە 2 نى 3+\sqrt{3} گە كۆپەيتىڭ.
10-2\sqrt{3}+2\sqrt{3}
4 گە 6 نى قوشۇپ 10 نى چىقىرىڭ.
10
-2\sqrt{3} بىلەن 2\sqrt{3} نى بىرىكتۈرۈپ 0 نى چىقىرىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}