a نى يېشىش
a=\sqrt{2}\left(12-b\right)+17
b نى يېشىش
b=-\frac{\sqrt{2}\left(a-12\sqrt{2}-17\right)}{2}
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
a+b\sqrt{2}=\left(1+\sqrt{2}\right)^{4}
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
a=\left(1+\sqrt{2}\right)^{4}-b\sqrt{2}
ھەر ئىككى تەرەپتىن b\sqrt{2} نى ئېلىڭ.
a=-\sqrt{2}b+\left(\sqrt{2}+1\right)^{4}
ئەزالارنى قايتا رەتلەڭ.
a+b\sqrt{2}=\left(1+\sqrt{2}\right)^{4}
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
b\sqrt{2}=\left(1+\sqrt{2}\right)^{4}-a
ھەر ئىككى تەرەپتىن a نى ئېلىڭ.
\sqrt{2}b=-a+\left(\sqrt{2}+1\right)^{4}
تەڭلىمە ئۆلچەملىك بولدى.
\frac{\sqrt{2}b}{\sqrt{2}}=\frac{-a+12\sqrt{2}+17}{\sqrt{2}}
ھەر ئىككى تەرەپنى \sqrt{2} گە بۆلۈڭ.
b=\frac{-a+12\sqrt{2}+17}{\sqrt{2}}
\sqrt{2} گە بۆلگەندە \sqrt{2} گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
b=\frac{\sqrt{2}\left(-a+12\sqrt{2}+17\right)}{2}
17+12\sqrt{2}-a نى \sqrt{2} كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}