( - \mu N \leq f \leq \mu N ^ { \prime }
x نى يېشىش
x\in \mathrm{R}
f\geq -N\mu \text{ and }f\leq 0
μ نى يېشىش
\left\{\begin{matrix}\mu \leq -\frac{f}{N}\text{, }&N<0\text{ and }f\leq 0\\\mu =-\frac{f}{N}\text{, }&N\neq 0\text{ and }f\leq 0\\\mu \leq 0\text{, }&N\leq 0\text{ and }f=0\\\mu =0\text{, }&f=0\\\mu \geq -\frac{f}{N}\text{, }&N>0\text{ and }f\leq 0\\\mu \in \mathrm{R}\text{, }&N=0\text{ and }f=0\\\mu \geq 0\text{, }&N\geq 0\text{ and }f=0\end{matrix}\right.
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}