ھېسابلاش
4
كۆپەيتكۈچى
2^{2}
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\left(\frac{\sqrt{144+5^{2}}}{26}+\sqrt[3]{-8}+\sqrt{\left(-1\right)^{2}}\right)\left(-\sqrt{64}\right)
12 نىڭ 2-دەرىجىسىنى ھېسابلاپ 144 نى چىقىرىڭ.
\left(\frac{\sqrt{144+25}}{26}+\sqrt[3]{-8}+\sqrt{\left(-1\right)^{2}}\right)\left(-\sqrt{64}\right)
5 نىڭ 2-دەرىجىسىنى ھېسابلاپ 25 نى چىقىرىڭ.
\left(\frac{\sqrt{169}}{26}+\sqrt[3]{-8}+\sqrt{\left(-1\right)^{2}}\right)\left(-\sqrt{64}\right)
144 گە 25 نى قوشۇپ 169 نى چىقىرىڭ.
\left(\frac{13}{26}+\sqrt[3]{-8}+\sqrt{\left(-1\right)^{2}}\right)\left(-\sqrt{64}\right)
169 نىڭ كىۋادرات يىلتىزىنى ھېسابلاپ، 13 نى چىقىرىڭ.
\left(\frac{1}{2}+\sqrt[3]{-8}+\sqrt{\left(-1\right)^{2}}\right)\left(-\sqrt{64}\right)
13 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{13}{26} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
\left(\frac{1}{2}-2+\sqrt{\left(-1\right)^{2}}\right)\left(-\sqrt{64}\right)
\sqrt[3]{-8} نى ھېسابلاپ، -2 نى چىقىرىڭ.
\left(-\frac{3}{2}+\sqrt{\left(-1\right)^{2}}\right)\left(-\sqrt{64}\right)
\frac{1}{2} دىن 2 نى ئېلىپ -\frac{3}{2} نى چىقىرىڭ.
\left(-\frac{3}{2}+\sqrt{1}\right)\left(-\sqrt{64}\right)
-1 نىڭ 2-دەرىجىسىنى ھېسابلاپ 1 نى چىقىرىڭ.
\left(-\frac{3}{2}+1\right)\left(-\sqrt{64}\right)
1 نىڭ كىۋادرات يىلتىزىنى ھېسابلاپ، 1 نى چىقىرىڭ.
-\frac{1}{2}\left(-\sqrt{64}\right)
-\frac{3}{2} گە 1 نى قوشۇپ -\frac{1}{2} نى چىقىرىڭ.
-\frac{1}{2}\left(-8\right)
64 نىڭ كىۋادرات يىلتىزىنى ھېسابلاپ، 8 نى چىقىرىڭ.
4
-\frac{1}{2} گە -8 نى كۆپەيتىپ 4 نى چىقىرىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}