x نى يېشىش (complex solution)
x\in \frac{2^{\frac{2}{3}}\sqrt[3]{\sqrt{5}+3}e^{\frac{2\pi i}{3}}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{\sqrt{5}+3}e^{\frac{4\pi i}{3}}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{\sqrt{5}+3}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{3-\sqrt{5}}e^{\frac{4\pi i}{3}}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{3-\sqrt{5}}e^{\frac{2\pi i}{3}}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{3-\sqrt{5}}}{2}
x نى يېشىش
x=\frac{2^{\frac{2}{3}}\sqrt[3]{3-\sqrt{5}}}{2}\approx 0.72556263
x = \frac{2 ^ {\frac{2}{3}} \sqrt[3]{\sqrt{5} + 3}}{2} \approx 1.378240772
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
x^{3}x^{3}+1=3x^{3}
نۆلگە بۆلۈش بەلگىلەنمىگەچكە ئۆزگەرگۈچى مىقدار x قىممەت 0 گە تەڭ ئەمەس. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى x^{3} گە كۆپەيتىڭ.
x^{6}+1=3x^{3}
ئوخشاش ئاساسنىڭ دەرىجىسىنى كۆپەيتىش ئۈچۈن ئۇلارنىڭ دەرىجە كۆرسەتكۈچلىرىنى قوشۇڭ. 3 بىلەن 3 نى قوشۇپ، 6 نى چىقىرىڭ.
x^{6}+1-3x^{3}=0
ھەر ئىككى تەرەپتىن 3x^{3} نى ئېلىڭ.
t^{2}-3t+1=0
t نى x^{3} گە ئالماشتۇرۇڭ.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\times 1}}{2}
ax^{2}+bx+c=0 شەكلىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادراتلىق فورمۇلا ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتلىق فورمۇلادىكى 1 نى a گە، -3 نى b گە ۋە 1 نى c گە ئالماشتۇرۇڭ.
t=\frac{3±\sqrt{5}}{2}
ھېسابلاڭ.
t=\frac{\sqrt{5}+3}{2} t=\frac{3-\sqrt{5}}{2}
t=\frac{3±\sqrt{5}}{2} دېگەن تەڭلىمىنى ± پىلۇس ۋە ± مىنۇس بولغان ئەھۋاللار ئۈچۈن يېشىڭ.
x=-\sqrt[3]{\frac{\sqrt{5}+3}{2}}e^{\frac{\pi i}{3}} x=\sqrt[3]{\frac{\sqrt{5}+3}{2}}ie^{\frac{\pi i}{6}} x=\sqrt[3]{\frac{\sqrt{5}+3}{2}} x=-\sqrt[3]{\frac{3-\sqrt{5}}{2}}e^{\frac{\pi i}{3}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}ie^{\frac{\pi i}{6}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}
x=t^{3} بولغاچقا، ھەر بىر t ئۈچۈن تەڭلىمە يېشىش ئارقىلىق يېشىشكە بولىدۇ.
x=\sqrt[3]{\frac{3-\sqrt{5}}{2}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}ie^{\frac{\pi i}{6}}\text{, }x\neq 0 x=-\sqrt[3]{\frac{3-\sqrt{5}}{2}}e^{\frac{\pi i}{3}}\text{, }x\neq 0 x=\sqrt[3]{\frac{\sqrt{5}+3}{2}} x=\sqrt[3]{\frac{\sqrt{5}+3}{2}}ie^{\frac{\pi i}{6}}\text{, }x\neq 0 x=-\sqrt[3]{\frac{\sqrt{5}+3}{2}}e^{\frac{\pi i}{3}}\text{, }x\neq 0
ئۆزگەرگۈچى مىقدار x قىممەت 0 گە تەڭ ئەمەس.
x^{3}x^{3}+1=3x^{3}
نۆلگە بۆلۈش بەلگىلەنمىگەچكە ئۆزگەرگۈچى مىقدار x قىممەت 0 گە تەڭ ئەمەس. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى x^{3} گە كۆپەيتىڭ.
x^{6}+1=3x^{3}
ئوخشاش ئاساسنىڭ دەرىجىسىنى كۆپەيتىش ئۈچۈن ئۇلارنىڭ دەرىجە كۆرسەتكۈچلىرىنى قوشۇڭ. 3 بىلەن 3 نى قوشۇپ، 6 نى چىقىرىڭ.
x^{6}+1-3x^{3}=0
ھەر ئىككى تەرەپتىن 3x^{3} نى ئېلىڭ.
t^{2}-3t+1=0
t نى x^{3} گە ئالماشتۇرۇڭ.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\times 1}}{2}
ax^{2}+bx+c=0 شەكلىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادراتلىق فورمۇلا ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتلىق فورمۇلادىكى 1 نى a گە، -3 نى b گە ۋە 1 نى c گە ئالماشتۇرۇڭ.
t=\frac{3±\sqrt{5}}{2}
ھېسابلاڭ.
t=\frac{\sqrt{5}+3}{2} t=\frac{3-\sqrt{5}}{2}
t=\frac{3±\sqrt{5}}{2} دېگەن تەڭلىمىنى ± پىلۇس ۋە ± مىنۇس بولغان ئەھۋاللار ئۈچۈن يېشىڭ.
x=\sqrt[3]{\frac{\sqrt{5}+3}{2}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}
x=t^{3} بولغاچقا ھەر t نى x=\sqrt[3]{t} دەرىجە كۆتۈرۈش ئارقىلىق يېشىلىدۇ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}