ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش (complex solution)
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

x^{2}-3x+9=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 9}}{2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 1 نى a گە، -3 نى b گە ۋە 9 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 9}}{2}
-3 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-3\right)±\sqrt{9-36}}{2}
-4 نى 9 كە كۆپەيتىڭ.
x=\frac{-\left(-3\right)±\sqrt{-27}}{2}
9 نى -36 گە قوشۇڭ.
x=\frac{-\left(-3\right)±3\sqrt{3}i}{2}
-27 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{3±3\sqrt{3}i}{2}
-3 نىڭ قارشىسى 3 دۇر.
x=\frac{3+3\sqrt{3}i}{2}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{3±3\sqrt{3}i}{2} نى يېشىڭ. 3 نى 3i\sqrt{3} گە قوشۇڭ.
x=\frac{-3\sqrt{3}i+3}{2}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{3±3\sqrt{3}i}{2} نى يېشىڭ. 3 دىن 3i\sqrt{3} نى ئېلىڭ.
x=\frac{3+3\sqrt{3}i}{2} x=\frac{-3\sqrt{3}i+3}{2}
تەڭلىمە يېشىلدى.
x^{2}-3x+9=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
x^{2}-3x+9-9=-9
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 9 نى ئېلىڭ.
x^{2}-3x=-9
9 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-9+\left(-\frac{3}{2}\right)^{2}
-3، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{3}{2} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{3}{2} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-3x+\frac{9}{4}=-9+\frac{9}{4}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{3}{2} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-3x+\frac{9}{4}=-\frac{27}{4}
-9 نى \frac{9}{4} گە قوشۇڭ.
\left(x-\frac{3}{2}\right)^{2}=-\frac{27}{4}
كۆپەيتكۈچى x^{2}-3x+\frac{9}{4}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{27}{4}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{3}{2}=\frac{3\sqrt{3}i}{2} x-\frac{3}{2}=-\frac{3\sqrt{3}i}{2}
ئاددىيلاشتۇرۇڭ.
x=\frac{3+3\sqrt{3}i}{2} x=\frac{-3\sqrt{3}i+3}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{3}{2} نى قوشۇڭ.