ئاساسىي مەزمۇنغا ئاتلاش
كۆپەيتكۈچى
Tick mark Image
ھېسابلاش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=5 ab=1\left(-6\right)=-6
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى x^{2}+ax+bx-6 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,6 -2,3
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ھاسىلات -6 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1+6=5 -2+3=1
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-1 b=6
5 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x^{2}-x\right)+\left(6x-6\right)
x^{2}+5x-6 نى \left(x^{2}-x\right)+\left(6x-6\right) شەكلىدە قايتا يېزىڭ.
x\left(x-1\right)+6\left(x-1\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 6 نى چىقىرىڭ.
\left(x-1\right)\left(x+6\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-1 نى چىقىرىڭ.
x^{2}+5x-6=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-5±\sqrt{5^{2}-4\left(-6\right)}}{2}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-5±\sqrt{25-4\left(-6\right)}}{2}
5 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-5±\sqrt{25+24}}{2}
-4 نى -6 كە كۆپەيتىڭ.
x=\frac{-5±\sqrt{49}}{2}
25 نى 24 گە قوشۇڭ.
x=\frac{-5±7}{2}
49 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{2}{2}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-5±7}{2} نى يېشىڭ. -5 نى 7 گە قوشۇڭ.
x=1
2 نى 2 كە بۆلۈڭ.
x=-\frac{12}{2}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-5±7}{2} نى يېشىڭ. -5 دىن 7 نى ئېلىڭ.
x=-6
-12 نى 2 كە بۆلۈڭ.
x^{2}+5x-6=\left(x-1\right)\left(x-\left(-6\right)\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. 1 نى x_{1} گە ۋە -6 نى x_{2} گە ئالماشتۇرۇڭ.
x^{2}+5x-6=\left(x-1\right)\left(x+6\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.