x نى يېشىش
x=-20
x=-5
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
a+b=25 ab=100
تەڭلىمىنى يېشىش ئۈچۈن x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) دېگەن فورمۇلا ئارقىلىق x^{2}+25x+100 نى ھېسابلاڭ. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,100 2,50 4,25 5,20 10,10
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مۇسبەت، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مۇسبەت. ھاسىلات 100 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1+100=101 2+50=52 4+25=29 5+20=25 10+10=20
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=5 b=20
25 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x+5\right)\left(x+20\right)
كۆپەيتكەن \left(x+a\right)\left(x+b\right) دېگەن ئىپادىنى تاپقان قىممەت ئارقىلىق قايتا يېزىڭ.
x=-5 x=-20
تەڭلىمىنى يېشىش ئۈچۈن x+5=0 بىلەن x+20=0 نى يېشىڭ.
a+b=25 ab=1\times 100=100
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى x^{2}+ax+bx+100 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,100 2,50 4,25 5,20 10,10
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مۇسبەت، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مۇسبەت. ھاسىلات 100 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1+100=101 2+50=52 4+25=29 5+20=25 10+10=20
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=5 b=20
25 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x^{2}+5x\right)+\left(20x+100\right)
x^{2}+25x+100 نى \left(x^{2}+5x\right)+\left(20x+100\right) شەكلىدە قايتا يېزىڭ.
x\left(x+5\right)+20\left(x+5\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 20 نى چىقىرىڭ.
\left(x+5\right)\left(x+20\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x+5 نى چىقىرىڭ.
x=-5 x=-20
تەڭلىمىنى يېشىش ئۈچۈن x+5=0 بىلەن x+20=0 نى يېشىڭ.
x^{2}+25x+100=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-25±\sqrt{25^{2}-4\times 100}}{2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 1 نى a گە، 25 نى b گە ۋە 100 نى c گە ئالماشتۇرۇڭ.
x=\frac{-25±\sqrt{625-4\times 100}}{2}
25 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-25±\sqrt{625-400}}{2}
-4 نى 100 كە كۆپەيتىڭ.
x=\frac{-25±\sqrt{225}}{2}
625 نى -400 گە قوشۇڭ.
x=\frac{-25±15}{2}
225 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=-\frac{10}{2}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-25±15}{2} نى يېشىڭ. -25 نى 15 گە قوشۇڭ.
x=-5
-10 نى 2 كە بۆلۈڭ.
x=-\frac{40}{2}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-25±15}{2} نى يېشىڭ. -25 دىن 15 نى ئېلىڭ.
x=-20
-40 نى 2 كە بۆلۈڭ.
x=-5 x=-20
تەڭلىمە يېشىلدى.
x^{2}+25x+100=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
x^{2}+25x+100-100=-100
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 100 نى ئېلىڭ.
x^{2}+25x=-100
100 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
x^{2}+25x+\left(\frac{25}{2}\right)^{2}=-100+\left(\frac{25}{2}\right)^{2}
25، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{25}{2} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{25}{2} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+25x+\frac{625}{4}=-100+\frac{625}{4}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{25}{2} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+25x+\frac{625}{4}=\frac{225}{4}
-100 نى \frac{625}{4} گە قوشۇڭ.
\left(x+\frac{25}{2}\right)^{2}=\frac{225}{4}
كۆپەيتكۈچى x^{2}+25x+\frac{625}{4}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{25}{2}\right)^{2}}=\sqrt{\frac{225}{4}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{25}{2}=\frac{15}{2} x+\frac{25}{2}=-\frac{15}{2}
ئاددىيلاشتۇرۇڭ.
x=-5 x=-20
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{25}{2} نى ئېلىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}