x نى يېشىش
x=-7
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
a+b=14 ab=49
تەڭلىمىنى يېشىش ئۈچۈن x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) دېگەن فورمۇلا ئارقىلىق x^{2}+14x+49 نى ھېسابلاڭ. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,49 7,7
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مۇسبەت، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مۇسبەت. ھاسىلات 49 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1+49=50 7+7=14
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=7 b=7
14 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x+7\right)\left(x+7\right)
كۆپەيتكەن \left(x+a\right)\left(x+b\right) دېگەن ئىپادىنى تاپقان قىممەت ئارقىلىق قايتا يېزىڭ.
\left(x+7\right)^{2}
ئىككى ئەزالىق كىۋادرات شەكلىدە قايتا يېزىڭ.
x=-7
تەڭلىمىنى يېشىش ئۈچۈن x+7=0 نى يېشىڭ.
a+b=14 ab=1\times 49=49
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى x^{2}+ax+bx+49 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,49 7,7
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مۇسبەت، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مۇسبەت. ھاسىلات 49 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1+49=50 7+7=14
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=7 b=7
14 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x^{2}+7x\right)+\left(7x+49\right)
x^{2}+14x+49 نى \left(x^{2}+7x\right)+\left(7x+49\right) شەكلىدە قايتا يېزىڭ.
x\left(x+7\right)+7\left(x+7\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 7 نى چىقىرىڭ.
\left(x+7\right)\left(x+7\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x+7 نى چىقىرىڭ.
\left(x+7\right)^{2}
ئىككى ئەزالىق كىۋادرات شەكلىدە قايتا يېزىڭ.
x=-7
تەڭلىمىنى يېشىش ئۈچۈن x+7=0 نى يېشىڭ.
x^{2}+14x+49=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-14±\sqrt{14^{2}-4\times 49}}{2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 1 نى a گە، 14 نى b گە ۋە 49 نى c گە ئالماشتۇرۇڭ.
x=\frac{-14±\sqrt{196-4\times 49}}{2}
14 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-14±\sqrt{196-196}}{2}
-4 نى 49 كە كۆپەيتىڭ.
x=\frac{-14±\sqrt{0}}{2}
196 نى -196 گە قوشۇڭ.
x=-\frac{14}{2}
0 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=-7
-14 نى 2 كە بۆلۈڭ.
\left(x+7\right)^{2}=0
كۆپەيتكۈچى x^{2}+14x+49. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+7\right)^{2}}=\sqrt{0}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+7=0 x+7=0
ئاددىيلاشتۇرۇڭ.
x=-7 x=-7
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 7 نى ئېلىڭ.
x=-7
تەڭلىمە يېشىلدى. يېشىش ئۇسۇلى ئوخشاش.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}