ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

x^{2}x^{2}+1=5x^{2}
نۆلگە بۆلۈش بەلگىلەنمىگەچكە ئۆزگەرگۈچى مىقدار x قىممەت 0 گە تەڭ ئەمەس. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى x^{2} گە كۆپەيتىڭ.
x^{4}+1=5x^{2}
ئوخشاش ئاساسنىڭ دەرىجىسىنى كۆپەيتىش ئۈچۈن ئۇلارنىڭ دەرىجە كۆرسەتكۈچلىرىنى قوشۇڭ. 2 بىلەن 2 نى قوشۇپ، 4 نى چىقىرىڭ.
x^{4}+1-5x^{2}=0
ھەر ئىككى تەرەپتىن 5x^{2} نى ئېلىڭ.
t^{2}-5t+1=0
t نى x^{2} گە ئالماشتۇرۇڭ.
t=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 1\times 1}}{2}
ax^{2}+bx+c=0 شەكلىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادراتلىق فورمۇلا ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتلىق فورمۇلادىكى 1 نى a گە، -5 نى b گە ۋە 1 نى c گە ئالماشتۇرۇڭ.
t=\frac{5±\sqrt{21}}{2}
ھېسابلاڭ.
t=\frac{\sqrt{21}+5}{2} t=\frac{5-\sqrt{21}}{2}
t=\frac{5±\sqrt{21}}{2} دېگەن تەڭلىمىنى ± پىلۇس ۋە ± مىنۇس بولغان ئەھۋاللار ئۈچۈن يېشىڭ.
x=\frac{\sqrt{3}+\sqrt{7}}{2} x=-\frac{\sqrt{3}+\sqrt{7}}{2} x=-\frac{\sqrt{3}-\sqrt{7}}{2} x=\frac{\sqrt{3}-\sqrt{7}}{2}
x=t^{2} بولغاچقا ھەر t نى x=±\sqrt{t} دەرىجە كۆتۈرۈش ئارقىلىق يېشىلىدۇ.