ئاساسىي مەزمۇنغا ئاتلاش
كۆپەيتكۈچى
Tick mark Image
ھېسابلاش
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=-6 ab=1\times 9=9
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى p^{2}+ap+bp+9 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,-9 -3,-3
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مەنپىي، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مەنپىي. ھاسىلات 9 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1-9=-10 -3-3=-6
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-3 b=-3
-6 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(p^{2}-3p\right)+\left(-3p+9\right)
p^{2}-6p+9 نى \left(p^{2}-3p\right)+\left(-3p+9\right) شەكلىدە قايتا يېزىڭ.
p\left(p-3\right)-3\left(p-3\right)
بىرىنچى گۇرۇپپىدىن p نى، ئىككىنچى گۇرۇپپىدىن -3 نى چىقىرىڭ.
\left(p-3\right)\left(p-3\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا p-3 نى چىقىرىڭ.
\left(p-3\right)^{2}
ئىككى ئەزالىق كىۋادرات شەكلىدە قايتا يېزىڭ.
factor(p^{2}-6p+9)
ئۈچ ئەزالىق ئۈچ ئەزالىق كىۋادرات شەكلىدە بولۇپ، بىر ئومۇمىي بۆلگۈچى ئارقىلىق كۆپەيتىلىشى مۇمكىن. باش ۋە ئاياغ ئەزالارنىڭ كىۋادرات يىلتىزىنى تېپىش ئارقىلىق ئۈچ ئەزالىق كىۋادراتنىڭ كۆپەيتكۈچىسىنى تېپىشقا بولىدۇ.
\sqrt{9}=3
ئاياغ ئەزا 9 نىڭ كىۋادرات يىلتىزىنى تېپىڭ.
\left(p-3\right)^{2}
ئۈچ ئەزالىق كىۋادرات باش ۋە ئاياغ ئەزالارنىڭ كىۋادرات يىلتىزىنىڭ يىغىندىسى ياكى ئايرىمىسى بولغان ئىككى ئەزالىق كىۋادراتتۇر.
p^{2}-6p+9=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
p=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
p=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2}
-6 نىڭ كىۋادراتىنى تېپىڭ.
p=\frac{-\left(-6\right)±\sqrt{36-36}}{2}
-4 نى 9 كە كۆپەيتىڭ.
p=\frac{-\left(-6\right)±\sqrt{0}}{2}
36 نى -36 گە قوشۇڭ.
p=\frac{-\left(-6\right)±0}{2}
0 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
p=\frac{6±0}{2}
-6 نىڭ قارشىسى 6 دۇر.
p^{2}-6p+9=\left(p-3\right)\left(p-3\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. 3 نى x_{1} گە ۋە 3 نى x_{2} گە ئالماشتۇرۇڭ.