ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

2^{2}x^{2}-2x-3=0
\left(2x\right)^{2} نى يېيىڭ.
4x^{2}-2x-3=0
2 نىڭ 2-دەرىجىسىنى ھېسابلاپ 4 نى چىقىرىڭ.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 4\left(-3\right)}}{2\times 4}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 4 نى a گە، -2 نى b گە ۋە -3 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 4\left(-3\right)}}{2\times 4}
-2 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-2\right)±\sqrt{4-16\left(-3\right)}}{2\times 4}
-4 نى 4 كە كۆپەيتىڭ.
x=\frac{-\left(-2\right)±\sqrt{4+48}}{2\times 4}
-16 نى -3 كە كۆپەيتىڭ.
x=\frac{-\left(-2\right)±\sqrt{52}}{2\times 4}
4 نى 48 گە قوشۇڭ.
x=\frac{-\left(-2\right)±2\sqrt{13}}{2\times 4}
52 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{2±2\sqrt{13}}{2\times 4}
-2 نىڭ قارشىسى 2 دۇر.
x=\frac{2±2\sqrt{13}}{8}
2 نى 4 كە كۆپەيتىڭ.
x=\frac{2\sqrt{13}+2}{8}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{2±2\sqrt{13}}{8} نى يېشىڭ. 2 نى 2\sqrt{13} گە قوشۇڭ.
x=\frac{\sqrt{13}+1}{4}
2+2\sqrt{13} نى 8 كە بۆلۈڭ.
x=\frac{2-2\sqrt{13}}{8}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{2±2\sqrt{13}}{8} نى يېشىڭ. 2 دىن 2\sqrt{13} نى ئېلىڭ.
x=\frac{1-\sqrt{13}}{4}
2-2\sqrt{13} نى 8 كە بۆلۈڭ.
x=\frac{\sqrt{13}+1}{4} x=\frac{1-\sqrt{13}}{4}
تەڭلىمە يېشىلدى.
2^{2}x^{2}-2x-3=0
\left(2x\right)^{2} نى يېيىڭ.
4x^{2}-2x-3=0
2 نىڭ 2-دەرىجىسىنى ھېسابلاپ 4 نى چىقىرىڭ.
4x^{2}-2x=3
3 نى ھەر ئىككى تەرەپكە قوشۇڭ. ھەرقانداق سانغا نۆل قوشۇلسا نەتىجە شۇ ساننىڭ ئۆزىدۇر.
\frac{4x^{2}-2x}{4}=\frac{3}{4}
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x^{2}+\left(-\frac{2}{4}\right)x=\frac{3}{4}
4 گە بۆلگەندە 4 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-\frac{1}{2}x=\frac{3}{4}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-2}{4} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{3}{4}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{1}{4} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{1}{4} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{3}{4}+\frac{1}{16}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{1}{4} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{13}{16}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{3}{4} نى \frac{1}{16} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x-\frac{1}{4}\right)^{2}=\frac{13}{16}
كۆپەيتكۈچى x^{2}-\frac{1}{2}x+\frac{1}{16}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{13}{16}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{1}{4}=\frac{\sqrt{13}}{4} x-\frac{1}{4}=-\frac{\sqrt{13}}{4}
ئاددىيلاشتۇرۇڭ.
x=\frac{\sqrt{13}+1}{4} x=\frac{1-\sqrt{13}}{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{4} نى قوشۇڭ.