g نى يېشىش (complex solution)
\left\{\begin{matrix}g=-\frac{x\epsilon -\epsilon +9}{x}\text{, }&x\neq 0\\g\in \mathrm{C}\text{, }&x=0\text{ and }\epsilon =9\end{matrix}\right.
x نى يېشىش (complex solution)
\left\{\begin{matrix}x=\frac{\epsilon -9}{g+\epsilon }\text{, }&\epsilon \neq -g\\x\in \mathrm{C}\text{, }&\epsilon =9\text{ and }g=-9\end{matrix}\right.
g نى يېشىش
\left\{\begin{matrix}g=-\frac{x\epsilon -\epsilon +9}{x}\text{, }&x\neq 0\\g\in \mathrm{R}\text{, }&x=0\text{ and }\epsilon =9\end{matrix}\right.
x نى يېشىش
\left\{\begin{matrix}x=\frac{\epsilon -9}{g+\epsilon }\text{, }&\epsilon \neq -g\\x\in \mathrm{R}\text{, }&\epsilon =9\text{ and }g=-9\end{matrix}\right.
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
9+xg=\epsilon -x\epsilon
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
xg=\epsilon -x\epsilon -9
ھەر ئىككى تەرەپتىن 9 نى ئېلىڭ.
xg=-x\epsilon +\epsilon -9
تەڭلىمە ئۆلچەملىك بولدى.
\frac{xg}{x}=\frac{-x\epsilon +\epsilon -9}{x}
ھەر ئىككى تەرەپنى x گە بۆلۈڭ.
g=\frac{-x\epsilon +\epsilon -9}{x}
x گە بۆلگەندە x گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
\epsilon -x\epsilon -xg=9
ھەر ئىككى تەرەپتىن xg نى ئېلىڭ.
-x\epsilon -xg=9-\epsilon
ھەر ئىككى تەرەپتىن \epsilon نى ئېلىڭ.
\left(-\epsilon -g\right)x=9-\epsilon
x نى ئۆز ئىچىگە ئالغان بارلىق ئەزالارنى بىرىكتۈرۈڭ.
\left(-g-\epsilon \right)x=9-\epsilon
تەڭلىمە ئۆلچەملىك بولدى.
\frac{\left(-g-\epsilon \right)x}{-g-\epsilon }=\frac{9-\epsilon }{-g-\epsilon }
ھەر ئىككى تەرەپنى -\epsilon -g گە بۆلۈڭ.
x=\frac{9-\epsilon }{-g-\epsilon }
-\epsilon -g گە بۆلگەندە -\epsilon -g گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x=-\frac{9-\epsilon }{g+\epsilon }
-\epsilon +9 نى -\epsilon -g كە بۆلۈڭ.
9+xg=\epsilon -x\epsilon
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
xg=\epsilon -x\epsilon -9
ھەر ئىككى تەرەپتىن 9 نى ئېلىڭ.
xg=-x\epsilon +\epsilon -9
تەڭلىمە ئۆلچەملىك بولدى.
\frac{xg}{x}=\frac{-x\epsilon +\epsilon -9}{x}
ھەر ئىككى تەرەپنى x گە بۆلۈڭ.
g=\frac{-x\epsilon +\epsilon -9}{x}
x گە بۆلگەندە x گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
\epsilon -x\epsilon -xg=9
ھەر ئىككى تەرەپتىن xg نى ئېلىڭ.
-x\epsilon -xg=9-\epsilon
ھەر ئىككى تەرەپتىن \epsilon نى ئېلىڭ.
\left(-\epsilon -g\right)x=9-\epsilon
x نى ئۆز ئىچىگە ئالغان بارلىق ئەزالارنى بىرىكتۈرۈڭ.
\left(-g-\epsilon \right)x=9-\epsilon
تەڭلىمە ئۆلچەملىك بولدى.
\frac{\left(-g-\epsilon \right)x}{-g-\epsilon }=\frac{9-\epsilon }{-g-\epsilon }
ھەر ئىككى تەرەپنى -\epsilon -g گە بۆلۈڭ.
x=\frac{9-\epsilon }{-g-\epsilon }
-\epsilon -g گە بۆلگەندە -\epsilon -g گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x=-\frac{9-\epsilon }{g+\epsilon }
-\epsilon +9 نى -\epsilon -g كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}